International Journal of Theoretical Physics

, Volume 55, Issue 2, pp 1043–1048 | Cite as

General Solution of Massless Spin-\(\frac {3}{2}\) Field in de Sitter Universe

  • S. Parsamehr


This paper is devoted to a general solution of the massless spin-\(\frac {3}{2}\) field in de Sitter space without any conditions in ambient space formalism. A general solution of the second-order field equation can be written in terms of a vector-spinor polarization state and a massless conformally coupled scalar field.


de Sitter Gravitino Ambient space Gauge invariant 



I would like to express our heartfelt thank and sincere gratitude to Professor M.V. Takook for his helpful discussions. I am grateful to M. Enayati for useful discussions.


  1. 1.
    Ade, P.A.R., et al.: Detection of B-Mode polarization at degree angular scales by BICEP2. Phys. Rev. Lett. 112, 241101 (2014). arXiv:1403.3985v3 ADSCrossRefGoogle Scholar
  2. 2.
    Perlmutter, S., et al.: Measurement of Ω and Λ from 42 high-redshift supernovae. Astrophys. J. 517, 565 (1999)Google Scholar
  3. 3.
    Riess, A.G., et al.: Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009 (1998). arXiv:9805201v1 ADSCrossRefGoogle Scholar
  4. 4.
    Bunch, T.S., Davies, P.C.W.: Quantum field theory in de sitter space: renormalization by point-splitting. Proc. R. Soc. Lond. A 360, 117 (1978)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Allen, B.: Vacuum states in de Sitter space. Phys. Rev. D 32, 3136 (1985)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Bros, J., Moschella, U.: Two-point functions and quantum field in the de Sitter Universe. Rev. Math. Phys. 8, 327 (1996). arXiv:9511019v1 MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Chernikov, N.A., Tagirov, E.A.: Quantum theory of scalar field in de Sitter space-time. Ann. Inst. Henri Poincaré IX, 109 (1968)ADSMathSciNetMATHGoogle Scholar
  8. 8.
    Takook, M.V.: Entropy of quantum fields in de sitter space-time. arXiv:1306.3575
  9. 9.
    Takook, M.V.: Quantum field theory in de Sitter universe: ambient space formalism. arXiv:1403.1204v2
  10. 10.
    Pagels, H., Primack, J.R.: Supersymmetry, cosmology, and new physics at Teraelectronvolt energies. Phys. Rev. Lett. 48, 223 (1982)ADSCrossRefGoogle Scholar
  11. 11.
    Moroi, T., Murayama, H., Yamaguchi, M.: Cosmological constraints on the light stable gravitino. Phys. Lett. B 303, 289 (1993)ADSCrossRefGoogle Scholar
  12. 12.
    Kohri, K., Moroi, T., Yotsuyanagi, A.: Big-Bang nucleosynthesis with unstable gravitino and upper bound on the reheating temperature. Phys. Rev. D 73, 123511 (2006). arXiv:0507245v1 ADSCrossRefGoogle Scholar
  13. 13.
    Rarita, W., Schwinger, J.: On a theory of particles with half-integral spin. Phys. Rev. 60, 61 (1941)ADSCrossRefMATHGoogle Scholar
  14. 14.
    Takook, M.V., Azizi, A., Babaian, E.: Covariant quantization of massive spin-\(\frac {3}{2}\) fields in the de Sitter space. Eur. Phys. J. C 72, 2026 (2012). arXiv:1206.1997v1
  15. 15.
    Fatahi, N., Takook, M.V., Tanhayi, M.R.: Conformally covariant vector-spinor field in de Sitter space. Eur. Phys. J. C 74, 3111 (2014). arXiv:1405.7535v2 ADSCrossRefGoogle Scholar
  16. 16.
    Parsamehr, S., Enayati, M., Takook, M.V.: Vector-spinor super-gauge field in de Sitter Universe. arXiv:1504.00453v1
  17. 17.
    Takook, M.V.: Théorie quantique des champs pour des systèmes élémentaires. Takook, Théorie quantique des champs pour des systèmes élémentaires “massifs” et de “masse nulle” sur l’espace- temps de de Sitter. Thèse de l’université Paris VI (1997)Google Scholar
  18. 18.
    Bartesaghi, P., Gazeau, J.P., Moschella, U., Takook, M.V.: Dirac fields and thermal effects in the de Sitter universe. Class Quant. Grav. 18, 4373 (2001)ADSMathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Physics, Science and Research BranchIslamic Azad UniversityTehranIran

Personalised recommendations