Advertisement

International Journal of Theoretical Physics

, Volume 55, Issue 2, pp 854–860 | Cite as

Hawking Radiation of Spin-3/2 Particles from Kerr Black Hole

  • Shihong Tong
Article
  • 87 Downloads

Abstract

By using dimensional reduction and consistent anomaly method, we calculate the Hawking flux of the spin- 3/2 field in the Kerr black hole background. The results confirm that the Hawking radiation doesn’t depends on the detail of the fields living near the horizon, at least at the semi-classical level. The Hawking temperature is an universality character of black hole which only depends on the information of the horizon. Our calculation agrees with earlier results obtained by the WKB/tunneling method (Yale and Mann, Phys. Lett. B 673(2), 168–172, 2009).

Keywords

Hawking radiation Anomaly cancellation Spin- 3/2 

References

  1. 1.
    Hawking, S.: Nature 248, 30 (1974)ADSCrossRefGoogle Scholar
  2. 2.
    Hawking, S.: Commun. Math. Phys. 43, 199 (1975)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Parikh, M., Wilczek, F.: Phys. Rev. Lett. 85, 5042 (2000)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Robinson, S.P., Wilczek, F.: Phys. Rev. Lett. 96, 151302 (2005)MathSciNetGoogle Scholar
  5. 5.
    Satoshi, I., Hiroshi, U., Frank, W.: Phys. Rev. Lett. 96, 151302 (2006)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Christensen, S., Fulling, S.: Phys. Rev. D15, 2088 (1977)ADSGoogle Scholar
  7. 7.
    Akhmedova, V., Pilling, T., de Gill, A., Singleton, D.: Phys. Lett. B673, 227 (2009)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    Bardeen, W.A., Zumino, B.: Nucl. Phys. B244, 421 (1984)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Banerjee, R., Kulkarni, S.: Phys. Rev. D 77, 024018 (2008)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Banerjee, R., Kulkarni, S.: Phys. Lett. B 659, 827 (2008)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Yale, A., Mann, R. B.: Phys. Lett. B 673, 2 (2009)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Banerjee, R., Majhi, B.R.: Phys. Lett. B 675, 243–245 (2009)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Ghosh, S.: arXiv:0804.2999 [hep-th]
  14. 14.
    Banerjee, R., Majhi, B.R.: Phys. Rev. D 79, 064024 (2009) arXiv:0812.0497 [hep-th]ADSCrossRefGoogle Scholar
  15. 15.
    Bonora, L., Cvitan, M., Pallua, S., Smolic, I.: Hawking fluxes, fermionic currents, W algebra, and anomalies. Phys. Rev. D80, 084034 (2009)ADSMathSciNetMATHGoogle Scholar
  16. 16.
    Yi, X., Chen, X. W.: Anomalies, Hawking radiation in Taub-NUT black hole. Int. J. Theor. Phys. 50, 3385 (2011)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Becar, R., Gonzalez, P.A.: Hawking radiation for scalar and dirac fields in five dimensional dilatonic black hole via anomalies. Int. J. Mod. Phys. D 21, 1250030 (2012)ADSMathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    de Wit, B.: Fortsch. Phys. 54, 183 (2006) arXiv: hep-th/0511261 ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Andrianopoli, L., D’Auria, R., Ferrara, S., Trigiante, M.: Lect. Notes Phys. 737, 661 (2008) arXiv:hep-th/0611345 ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.School of SciencesSouthwest Petroleum UniversityChengduChina

Personalised recommendations