International Journal of Theoretical Physics

, Volume 55, Issue 1, pp 313–328 | Cite as

Constructions of Asymmetric Quantum Alternant Codes

  • Jihao Fan
  • Hanwu Chen
  • Juan Xu


Asymmetric quantum error-correcting codes (AQCs) have been proposed to deal with the significant asymmetry in many quantum channels, which may have more flexbility than general quantum error-correcting codes (QECs). In this paper, we construct AQCs based on Alternant codes. Firstly, we propose a new subclass of Alternant codes and combine them with BCH codes to construct AQCs. Then we construct AQCs based on series of nested pairs of subclasses of Alternant codes such as nested Goppa codes. As an illustrative example, we get three [[55, 6, 19/4]], [[55, 10, 19/3]], [[55, 15, 19/2]] AQCs from the well known [55, 16, 19] binary Goppa code. At last, we get asymptotically good binary expansions of quantum GRS codes, which are quantum generalizations of Retter’s classical results.


Alternant codes Asymmetric quantum error-correcting codes BCH codes Generalized Reed-Solomon codes Gilbert-Varshamov bound Goppa codes Quantum error-correcting codes 



This work was supported by the National Natural Science Foundation of China under Grant No. 61170321, the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No. 20110092110024 and the Graduate Research Innovation Plans of Colleges and Universities in Jiangsu Province 2013 under Grant No. CXZZ13_0105.


  1. 1.
    Aliferis, P., Preskill, J.: Fault-tolerant quantum computation against biased noise. Phys. Rev. A 78(052), 331 (2008)Google Scholar
  2. 2.
    Aly, S.A., Klappenecker, A., Sarvepalli, P.K.: On quantum and classical BCH codes. IEEE Trans. Inf. Theory 53(3), 1183–1188 (2007)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Ashikhmin, A., Litsyn, S., Tsfasman, M.A.: Asymptotically good quantum codes. Phys. Rev. A 032(3), 311 (2001)Google Scholar
  4. 4.
    Bezzateev, S.V., Shekhunova, N.A.: Subclass of binary Goppa codes with minimal distance equal to the design distance. IEEE Trans. Inf. Theory 41(2), 554–555 (1995)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Brooks, P., Preskill, J.: Fault-tolerant quantum computation with asymmetric Bacon-Shor codes. Phys. Rev. A 032(3), 310 (2013)Google Scholar
  6. 6.
    Calderbank, A.R., Rains, E.M., Shor, P., Sloane, N.J.: Quantum error correction via codes over GF(4). IEEE Trans. Inf. Theory 44(4), 1369–1387 (1998)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Cannon, J., Bosma, W.: Handbook of MAGMA functions. Edition 2.13, 1–4328 (2006)Google Scholar
  8. 8.
    Chien, R., Choy, D.: Algebraic generalization of BCH-Goppa-Helgert codes. IEEE Trans. Inf. Theory 21(1), 70–79 (1975)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Evans, Z., Stephens, A., Cole, J., Hollenberg, L.: Error correction optimisation in the presence of x/z asymmetry. Preprint arXiv: 0709.3875 (2007)
  10. 10.
    Ezerman, M.F., Jitman, S., Ling, S., Pasechnik, D.V.: CSS-like constructions of asymmetric quantum codes. IEEE Trans. Inf. Theory 59(10), 6732–6754 (2013)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Ezerman, M.F., Ling, S., Sole, P.: Additive asymmetric quantum codes. IEEE Trans. Inf. Theory 57(8), 5536–5550 (2011)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Frederic Ezerman, M., Jitman, S., Mao Kiah, H., Ling, S.: Pure asymmetric quantum MDS codes from CSS construction: A complete characterization. Int. J. Quantum Inf. 11(3), 1350,027 (2013)CrossRefGoogle Scholar
  13. 13.
    Goppa, V.D.: A new class of linear correcting codes. Probl. Peredachi. Inf. 6(3), 24–30 (1970)MathSciNetMATHGoogle Scholar
  14. 14.
    Goppa, V.D.: A rational representation of codes and (l, g)-codes. Probl. Peredachi. Inf. 7(3), 41–49 (1971)MathSciNetMATHGoogle Scholar
  15. 15.
    Grassl, M.: Bounds on the minimum distance of linear codes and quantum codes. Online available at, URL Accessed on 2013 (2007)
  16. 16.
    Ioffe, L., Mézard, M.: Asymmetric quantum error-correcting codes. Phys. Rev. A 75(032), 345 (2007)Google Scholar
  17. 17.
    Ketkar, A., Klappenecker, A., Kumar, S., Sarvepalli, P.K.: Nonbinary stabilizer codes over finite fields. IEEE Trans. Inf. Theory 52(11), 4892–4914 (2006)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    La Guardia, G.G.: Asymmetric quantum Reed-Solomon and generalized Reed-Solomon codes. Quantum Inf. Process. 11(2), 591–604 (2012)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    La Guardia, G.G.: Asymmetric quantum codes: new codes from old. Quantum Inf. Process. 12(8), 2771–2790 (2013)ADSMathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Loeloeian, M., Conan, J.: A [55,16,19] binary Goppa code (corresp.) IEEE Trans. Inf. Theory 30(5), 773–773 (1984)MathSciNetCrossRefGoogle Scholar
  21. 21.
    MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. The Netherlands: North-Holland, Amsterdam (1981)Google Scholar
  22. 22.
    Moreno, C.J., Moreno, O.: Exponential sums and Goppa codes: II. IEEE Trans. Inf. Theory 38(4), 1222–1229 (1992)CrossRefMATHGoogle Scholar
  23. 23.
    Retter, C.T.: The average binary weight-enumerator for a class of generalized Reed-Solomon codes. IEEE Trans. Inf. Theory 37(2), 346–349 (1991)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Sarvepalli, P.K., Klappenecker, A., Rötteler, M.: Asymmetric quantum codes: constructions, bounds and performance. Proc. Roy. Soc. A 465, 1645–1672 (2009)ADSCrossRefMATHGoogle Scholar
  25. 25.
    Steane, A.: Multiple-particle interference and quantum error correction. Proc. Roy. Soc. A 452, 2551–2577 (1996)ADSMathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Van der Vlugt, M.: The true dimension of certain binary Goppa codes. IEEE Trans. Inf. Theory 36(2), 397–398 (1990)ADSMathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Wang, L., Feng, K., Ling, S., Xing, C.: Asymmetric quantum codes: characterization and constructions. IEEE Trans. Inf. Theory 56(6), 2938–2945 (2010)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringSoutheast UniversityNanjingPeople’s Republic of China
  2. 2.College of Computer Science and TechnologyNanjing University of Aeronautics and AstronauticsNanjingPeople’s Republic of China

Personalised recommendations