Advertisement

International Journal of Theoretical Physics

, Volume 55, Issue 1, pp 191–201 | Cite as

Quantum Steganography for Multi-party Covert Communication

  • Lin Liu
  • Guang-Ming Tang
  • Yi-Feng Sun
  • Shu-Fan Yan
Article

Abstract

A novel multi-party quantum steganography protocol based on quantum secret sharing is proposed in this paper. Hidden channels are built in HBB and improved HBB quantum secret sharing protocols for secret messages transmitting, via the entanglement swapping of GHZ states and Bell measurement. Compared with the original protocol, there are only a few different GHZ sates transmitted in the proposed protocol, making the hidden channel with good imperceptibility. Moreover, the secret messages keep secure even when the hidden channel is under the attack from the dishonest participators, for the sub-secretmessages distributed randomly to different participators. With good imperceptibility and security, the capacity of proposed protocol is higher than previous multi-party quantum steganography protocol.

Keywords

Quantum steganography Multi-party covert communication Quantum entanglement swapping Quantum communication 

References

  1. 1.
    Natori, S.: Why quantum steganography can be stronger than classical steganography. Quant. Comp. Infor. 102, 235–240 (2006)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bennett, C.H., Brassard, G.: In: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processings, Bangalore, India, p 175. IEEE, New York (1984)Google Scholar
  3. 3.
    Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)ADSCrossRefGoogle Scholar
  4. 4.
    Cai, Q.Y., Bai, W.L.: Improving the capacity of the Boström-Felbinger protocol. Phys. Rev. A 69, 054301 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    Hillery, M, Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Guo, G.P., Guo, G.C.: Quantum secret sharing without entanglement. Phys. Lett. A 310, 247–251 (2003)ADSMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Xiao, L., Long, G.L., Deng, F.G., Pan, J.W.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A 69, 052307 (2004)ADSCrossRefGoogle Scholar
  8. 8.
    Terhal, B.M., DiVincenzo, D.P., Leung, D. W.: Hiding bits in Bell states. Phys. Rev. Lett. 86, 5807 (2001)ADSCrossRefGoogle Scholar
  9. 9.
    Hayden, P., Leung, D., Smith, G.: Multiparty data hiding of quantum information. Phys. Rev. A 71, 062339 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    DiVincenzo, D.P., Leung, D.W., Terhal, B.M.: Quantum data hiding. IEEE Trans. Inf. Theory 48, 580–598 (2002)MATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Gea-Banacloche, J.: Hiding messages in quantum data. J. Math. Phys. 43, 4531–4536 (2002)ADSMATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Shaw, B.A., Brun, T.A.: Quantum steganography with noisy quantum channels. Phys. Rev.A 83, 022310 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    Liao, X., Wen, Q., Song, T., Zhang, J.: Quantum steganography with high efficiency with noisy depolarizing channels. IEICE Trans. Fundam. E96-A 10, 2039–2044 (2013)CrossRefGoogle Scholar
  14. 14.
    Mogos, G.: A quantum way to data hiding. Int. J. Multimed. Ubiquitous Eng. 4, 13–20 (2009)Google Scholar
  15. 15.
    Martin, K.: Steganographic communication with quantum information, information hiding, pp 32–49. Springer, Berlin Heidelberg (2007)Google Scholar
  16. 16.
    Qu, Z.G., Chen, X.B., Zhou, X.J., Niu, X.X., Yang, Y.X.: Novel quantum steganography with large payload. Opt. Commun. 283, 4782–4786 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    Qu, Z.G., Chen, X.B., Luo, M.X., Niu, X.X., Yang, Y.X.: Quantum steganography with large payload based on entanglement swapping of χ-type entangled states. Opt.Commun. 284, 2075–2082 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    Xu, S.J., Chen, X.B., Niu, X.X., Yang, Y.X.: High-efficiency quantum steganography based on the tensor product of Bell states. Sci. China Phys. Mech. Astron. 56, 1745–1754 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    Ye, T.Y., Jiang, L.Z.: Large payload quantum steganography based on cavity quantum electrodynamics. Chin. Phys. B 22, 040305 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    Ye, T.Y., Jiang, L.Z.: Quantum steganography with large payload based on dense coding and entanglement swapping of Greenberger-Horne-Zeilinger states. Chin. Phys. B 22, 050309 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    El, A.A., Medeni, M.B.O., Hassouni, Y.: Quantum Steganography via Greenberger-Horne-Zeilinger GHZ4 State. Commun. Theor. Phys. 57, 577 (2012)ADSMATHCrossRefGoogle Scholar
  22. 22.
    Negin, F., Mosayeb, N.: Quantum watermarking using entanglement swapping. Int. J. Theor. Phys. 51, 2094–2100 (2012)MATHCrossRefGoogle Scholar
  23. 23.
    Xu, S.J., Chen, X.B., Niu, X.X., Yang, Y.X.: Steganalysis and improvement of a quantum steganography protocol via GHZ4 state. Chin.Phys.B 20, 060307 (2013)CrossRefGoogle Scholar
  24. 24.
    Liao, X., Wen, Q.Y., Sun, Y., Zhang, J.: Multi-party covert communication with steganography and quantum secret sharing. J. Syst. Softw. 83, 18010–1804 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Lin Liu
    • 1
  • Guang-Ming Tang
    • 2
  • Yi-Feng Sun
    • 2
  • Shu-Fan Yan
    • 1
  1. 1.Zhengzhou Information Science and Technology InstituteHenanPeople’s Republic of China
  2. 2.Department of Information SecurityZhengzhou Information Science and Technology InstituteHenanPeople’s Republic of China

Personalised recommendations