Advertisement

International Journal of Theoretical Physics

, Volume 54, Issue 9, pp 3155–3161 | Cite as

Holography in (2 + 1)−dimensional Cosmological Model with Generalized Equation of State

  • G S Khadekar
Article
  • 88 Downloads

Abstract

In this paper we examine the cosmic holographic principle suggested by Fischler and Susskind (1998) in (2 + 1)−dimensional cosmological models by using generalized equation of state of a more general form, p = (γ−1)(ρ+ρ 0), where γ and ρ 0 are two parameters. It is shown that the holographic principle is satisfied in all flat and open universes. For (2 + 1)−dimensional closed universe by applying the method proposed by Kaloper, N. and Linde, A. Phys. Rev. D 60, 103509 (1999), we find that the holographic principle cannot be realized in general.

Keywords

Holographic principle Dark energy (2 + 1)− dimensional gravity 

References

  1. 1.
    Fischler, W., Susskind, L.: Holography and Cosmology. arXiv:hep-th/9409089 (1998)
  2. 2.
    Kaloper, N., Linde, A.: Cosmology vs. Holography. Phys. Rev. D 60, 103509 (1999)MathSciNetCrossRefADSGoogle Scholar
  3. 3.
    Giddings, S., Abbott, J., Kucar, K.: Einstein theory in a three dimensional spacetime. Gen. Rel. Grav. 16, 751 (1984)MATHCrossRefADSGoogle Scholar
  4. 4.
    Barrow, J.D., Burd, A.B., Lancaster, D.: Three dimensional classical spacetime. Class. Quantum Grav. 3, 551 (1986)MathSciNetCrossRefADSGoogle Scholar
  5. 5.
    Gott, J.R., Simon, J.Z., Alpert, M.: General relativity in a (2 + 1)−dimensional spacetime: An electrically charged solution. Gen. Rel. Grav. 16, 751 (1984)CrossRefADSGoogle Scholar
  6. 6.
    Deser, S., Jackiw, R., t Hooft, G.: Three dimensional Einstein gravity: dynamics of flat space. Ann. Phys. NY 152, 220 (1984)MathSciNetCrossRefADSGoogle Scholar
  7. 7.
    Deser, S., Mazur, P.: Static solution in D = 3 Einstein Maxwell theory. Class. Quantum Grav. 2, L51 (1985)MathSciNetCrossRefADSGoogle Scholar
  8. 8.
    Deser, S.: Relativity, Cosmology, Topological Mass and SUGR ed C Aragone (Singapore: World Scientific)Google Scholar
  9. 9.
    Ba\(\widetilde {n}\)ados, M., Teitelboim, C., Zanelli, J.: Black hole in three dimensional spacetime. Phys. Rev. Lett. 69, 1849 (1992)Google Scholar
  10. 10.
    Barrow, J.D., Shaw, D.J., Tsagas, C.G.: Cosmology in three dimensions: steps towards the general solution. Class. Quantum Grav 23, 124022 (2003)MathSciNetGoogle Scholar
  11. 11.
    Garica, A., Cataldo, M., Compo, S. del.: Relation between (2 + 1) and (3+1) Freidmann-Robertson-Walker cosmologies. Phys. Rev. D 68, 103509 (1999)Google Scholar
  12. 12.
    Meng, X.H., Wang, P.: Modified Friedmann equations R −1-modified gravity. Class. Quantum Grav. 20, 4949 (2003)MATHMathSciNetCrossRefADSGoogle Scholar
  13. 13.
    Babichev, E., Dokuchaev, V., Eroshenko, Yu.: Dark energy cosmology with generalized linear equation of state. Class. Quantum Grav. 22, 143 (2005)MATHMathSciNetCrossRefADSGoogle Scholar
  14. 14.
    t Hooft, G.: published in Salam-festschrift: a collection of talks. In: Ali, A., Ellis, J., Randjibar-Daemi, S. (eds.) Word Scientific. arXiv:gr-qc/9310026(1993)
  15. 15.
    Susskind, L.: The world as a hologram. J. Math. Phys. 36, 6377 (1995)MATHMathSciNetCrossRefADSGoogle Scholar
  16. 16.
    Rama, S.K.: Holographic principle in the closed universe: a resolution with negative pressure matter. Phys. Lett. B 457, 268 (1999)MATHMathSciNetCrossRefADSGoogle Scholar
  17. 17.
    Bak, D., Rey, S.J.: Cosmic holography. Class. Quantum. Grav. 17, L83 (2000). arXiv:hep-th/981108 MATHMathSciNetCrossRefADSGoogle Scholar
  18. 18.
    Biswas, A.K., Maharana, J., Pradhan, R.K.: The holography hypothesis and pre-big bang cosmology. Phys. Lett. B 462, 243 (1999). arXiv:hep-th/9811051 MATHMathSciNetCrossRefADSGoogle Scholar
  19. 19.
    Veneziano, G.: Pre-Big-bang origin of our entropy and time arrow. Phys. Lett. B 454, 22 (1999)CrossRefADSGoogle Scholar
  20. 20.
    Kaloper, N., Linde, A., Bousso, R.: Pre-Big-Bang requires the universe to be exponentially large from the very beginning. Phys. Rev. D 59, 043508 (1999)CrossRefADSGoogle Scholar
  21. 21.
    Meng, X.H., Ren, J., Ming, Guag, Hu: Friedmann cosmology with generalized equation of state and bulk viscosity: Commu. Theor. Phys. 47, 378 (2007)Google Scholar
  22. 22.
    Wang, B., Abdalla, E.: Holography in (2 + 1)−dimensional cosmological models. Phys. Lett. B 466, 122 (1999)MATHMathSciNetCrossRefADSGoogle Scholar
  23. 23.
    Wang, B., Abdalla, E.: Holography and generalized second law of thermodynamics in (2 + 1)−dimensional cosmology. Phys. Lett. B 471, 346 (2000)MATHMathSciNetCrossRefADSGoogle Scholar
  24. 24.
    Cornish, N.J., Frankel, N.E.: Gravitation in (2 + 1)−dimensions. Phys. Rev. D 43, 2555 (2000)MathSciNetCrossRefADSGoogle Scholar
  25. 25.
    Bousso, R.: A covariant entropy conjecture. JHEP 9907, 004 (1999). arXiv:hep-th/9905177 MathSciNetCrossRefADSGoogle Scholar
  26. 26.
    Bousso, R.: Holography in general space. JHEP 9906, 028 (1999). arXiv:hep-th/9906022 MathSciNetCrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of MathematicsRashtrasant Tukadoji Maharaj Nagpur University, Mahatma Jyotiba Phule Educational CampusNagpurIndia

Personalised recommendations