Advertisement

International Journal of Theoretical Physics

, Volume 54, Issue 9, pp 3083–3091 | Cite as

Some Properties of Multi-qubit Systems Under the Effect of Lorentz Transformations

  • Nasser Metwally
Article
  • 78 Downloads

Abstract

The Effect of Lorentz transformation on some properties of multi-qubit systems is investigated. It is shown that, the fidelity and entanglement decay as the Wigner’s angles increase, but can be improved, if all the transformed particles are transformed with the same Wigner’s angles. The upper bounds of the average capacity of the Greenberger-Horne-Zeilinger (GHZ) state increase while it decrease for W-state as the Wigner’s angle of the observer decreases. Under Lorentz transformation, the tripartite states are transformed into another equivalent states and hence no change on the efficiency of these states to perform quantum information tasks.

Keywords

Lorentz transformation Multi-qubits Entanglement Fidelity Capacity 

Notes

Acknowledgments

I am grateful to the referees for their constructive comments and remarks, which have improved the manuscript in many aspects.

References

  1. 1.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2010)MATHCrossRefGoogle Scholar
  2. 2.
    Ahmed, A.-H.M., Zakaria, M.N., Metwally, N.: Appl. Math. Inf. Sci. 6, 781 (2012)Google Scholar
  3. 3.
    Metwally, N.: Soc, J. Opt. Am. B 30, 237 (2013)CrossRefADSGoogle Scholar
  4. 4.
    Eleuch, H.: Eur. Phys. J. D 8, 139 (2008)CrossRefADSGoogle Scholar
  5. 5.
    Abdel-Aty, M, Yu, T.: J. Phys. B Atom. Mol. Opt. Phys. 41, 235503 (2001)CrossRefADSGoogle Scholar
  6. 6.
    Sanders, B.C., San Kim, J.: Appl. Math. Inf. Sci. 4, 281 (2010)MathSciNetGoogle Scholar
  7. 7.
    Abdel-Aty, M.: J. Phys. A Math. Gen. 38, 8589 (2005)MATHMathSciNetCrossRefADSGoogle Scholar
  8. 8.
    Wootters, W.K.: Phys. Rev. Lett. 80, 2245 (1998)CrossRefADSGoogle Scholar
  9. 9.
    Berrada, K., Chafik, A., Eleuch, H., Hassouni, Y.: Quant. Inf. Process 9, 13 (2010)MATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Bennent, C.H., DiVincenzo, D.P., Smolin, J.A., Wootters, W.K.: Phys. Rev. A 54, 38241 (1996)Google Scholar
  11. 11.
    Hill, S., Wootters, W.K.: Phys. Rev. Lett. 78, 5022 (1997)CrossRefADSGoogle Scholar
  12. 12.
    Zyczkowski, K., Horodecki, P., Sanpera, A., Lewenstein, M.: Phys. Rev. A 58, 883 (1998)MathSciNetCrossRefADSGoogle Scholar
  13. 13.
    Vidal, G., Werner, R.F.: Phys. Rev. A 65, 032314 (2002)CrossRefADSGoogle Scholar
  14. 14.
    Coffman, V., Kundu, J., Wootters, W.K.: Phys. Rev. A 61, 052306 (2000)CrossRefADSGoogle Scholar
  15. 15.
    Friis, N., Bertlmann, R.A., Huber, M.: Phys. Rev. A 81, 042114 (2010)CrossRefADSGoogle Scholar
  16. 16.
    Saldanha, P.L., Vedral, V.: Phys. Rev. A 85, 062101 (2012)CrossRefADSGoogle Scholar
  17. 17.
    Esfahani, B., Aghaee, M.: Int. J. Ther. Phys. 50, 1395 (2011)MATHCrossRefGoogle Scholar
  18. 18.
    Ruiz, E.C., Achar, E.N.: Phys. Rev. A 85, 052331 (2012)CrossRefGoogle Scholar
  19. 19.
    Jordan, T.R.: Phys. Rev. A 75, 022101 (2007)MathSciNetCrossRefADSGoogle Scholar
  20. 20.
    Minter, F., Carvalho, A.R.R., Kus’, M., Buchleinter, A.: Phys. Rep. 415, 207 (2005)MathSciNetCrossRefADSGoogle Scholar
  21. 21.
    Coffman, V., Kundu, J., Wootters, W.K.: Phys. Rev. A 61, 052306 (2000)CrossRefADSGoogle Scholar
  22. 22.
    Dur, W., Vidal, G., Cirac, J.I.: Phys. Rev. A 62, 062314 (2000)MathSciNetCrossRefADSGoogle Scholar
  23. 23.
    Jung, E., Hwang, M.-R., Park, D., Tamaryan, S.: Quantum Inf. Comput. 10, 0377 (2010)MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Mathematics Faculty of ScienceAswan UniversityAswanEgypt
  2. 2.Department of Mathematics College of ScienceUniversity of BahrainManamaBahrain

Personalised recommendations