Skip to main content
Log in

Quantum Fisher Information of Localization Transitions in One-Dimensional Systems

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The concept of quantum Fisher information (QFI) is used to characterize the localization transitions in three representative one-dimensional models. It is found that the localization transition in each model can be distinctively illustrated by the evolution of QFI. For the Aubry-André model, the QFI exhibits an inflexion at the boundary between the extended states and localized ones. In the t 1t 2 model, the QFI has a transition point separating the extended states from the localized states, while the mobility edge of the QFI is energy dependent. Furthermore, nine energy bands in the Soukoulis-Economou (S-E) model can be clearly revealed by the QFI with global mobility edges and local mobility edges. The present work demonstrates the implication of the QFI as a general fingerprint to characterize the localization transitions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sarma, S.D., He, S., Xie, X.C.: Phys. Rev. B 41, 5544 (1990)

    Article  ADS  Google Scholar 

  2. Sarma, S.D., He, S., Xie, X.C.: Phys. Rev. Lett. 61, 2144 (1988)

    Article  ADS  Google Scholar 

  3. Biddle, J., Sarma, S.D.: Phys. Rev. Lett. 104, 070601 (2010)

    Article  ADS  Google Scholar 

  4. Biddle, J., Priour, D.J. Jr, Wang, B., Sarma, S.D.: Phys. Rev. B 83, 075105 (2011)

    Article  ADS  Google Scholar 

  5. Faez, S., Strybulevych, A., Page, J.H., Lagendijk, A., van Tiggelen, B.A.: Phys. Rev. Lett. 103, 155703 (2009)

    Article  ADS  Google Scholar 

  6. Aulbach, C., Wobst, A., Ingold, G., Hänggi, P., Varga, I.: New J. Phys. 6, 70 (2004)

    Article  ADS  Google Scholar 

  7. Billy, J., Josse, V., Zuo, Z.C., Bernard, A., Hambrecht, B., Lugan, P., Clment, D., Sanchez-Palencia, L., Bouyer, P., Aspect, A.: Nature 453, 891 (2008)

    Article  ADS  Google Scholar 

  8. Zhang, W., Yang, R., Zhao, Y., Duan, S.Q., Zhang, P., Ulloa, S.E.: Phys. Rev. B 81, 214202 (2010)

    Article  ADS  Google Scholar 

  9. Shima, H., Nomura, T., Nakayama, T.: Phys. Rev. B 70, 075116 (2004)

    Article  ADS  Google Scholar 

  10. Larcher, M., Modugno, M., Dalfovo, F.: Phys. Rev. A 83, 013624 (2011)

    Article  ADS  Google Scholar 

  11. Bilas, N., Pavloff, N.: Eur. Phys. J.D 40, 387 (2006)

    Article  ADS  Google Scholar 

  12. Yedjour, A., van Tiggelen, B.A.: Eur. Phys. J. D 59, 249 (2010)

    Article  ADS  Google Scholar 

  13. Moratti, M., Modugno, M.: Eur. Phys. J. D 66, 138 (2012)

    Article  ADS  Google Scholar 

  14. de Moura, F.A.B.F., Fulco, U.L., Lyra, M.L., Domnguez-Adamed, F., Albuquerque, E.L.: Physica A 390, 535 (2011)

    Article  ADS  Google Scholar 

  15. Djeraba, A., Senouci, K., Zekri, N.: Physica B 405, 1558 (2010)

    Article  ADS  Google Scholar 

  16. Avgin, I., Huber, D.L.: Physica B 406, 1906 (2011)

    Article  ADS  Google Scholar 

  17. de Moura, F.A.B.F., Lyra, M.L.: Phys. Rev. Lett. 81, 3735 (1998)

    Article  ADS  Google Scholar 

  18. Albrecht, C., Wimberger, S.: Phys. Rev. B 85, 045107 (2012)

    Article  ADS  Google Scholar 

  19. Lahini, Y., Pugatch, R., Pozzi, F., Sorel, M., Morandotti, R., Davidson, N., Silberberg, Y.: Phys. Rev. Lett. 103, 013901 (2009)

    Article  ADS  Google Scholar 

  20. Kraus, Y. E., Lahini, Y., Ringel, Z., Verbin, M., Zilberberg, O.: Phys. Rev. Lett. 109, 106402 (2012)

    Article  ADS  Google Scholar 

  21. Cheng, W.W., Gong, L.Y., Shan, C.J., Sheng, Y.B., Zhao, S.M.: Eur. Phys. J. D 67, 121 (2013)

    Article  ADS  Google Scholar 

  22. Helstrom, C.W.: Quantum Detection and Estimation Theory. Academic Press, New York (1976)

    MATH  Google Scholar 

  23. Holevo, A.S.: Statistical Structure of Quantum Theory. North-Holland, Amsterdam (1982)

    Google Scholar 

  24. Hübner, M.: Phys. Lett. A 163, 239 (1992); 179, 226 (1993)

  25. Braunstein, S.L., Caves, C.M.: Phys. Rev. Lett. 72, 3439 (1994)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  26. Braunstein, S., et al.: Ann. Phys. (NY) 247, 135 (1996)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  27. Liu, D.S., Du, J., Huang, G.-Q.: Int. J. Theor. Phys. 51, 2113 (2012)

    Article  MATH  Google Scholar 

  28. Li, N., Luo, S.L.: Phys. Rev. A 88, 014301 (2013)

    Article  ADS  Google Scholar 

  29. Hu, G.-J., Hu, X.-X.: Int. J. Theor. Phys. 53, 533 (2014)

    Article  MATH  Google Scholar 

  30. Boixo, S., Monras, A.: Phys. Rev. Lett. 100, 100503 (2008)

    Article  ADS  Google Scholar 

  31. Hyllus, P., Laskowski, W., Kridchek, R., Schwemmer, C., Wieczorek, W., Weinfurter, H., Pezze, L., Smerzi, A.: Phys. Rev. A 85, 022321 (2012)

    Article  ADS  Google Scholar 

  32. Monras, A., Paris, M.G.A.: Phys. Rev. Lett. 98, 160401 (2007)

    Article  ADS  Google Scholar 

  33. Ma, J., Huang, Y.-X., Wang, X.G., Sun, C.P.: Phys. Rev. A 84, 022302 (2011)

    Article  ADS  Google Scholar 

  34. Watanabe, Y., Sagawa, T., Ueda, M.: Phys. Rev. Lett. 104, 020401 (2010)

    Article  ADS  Google Scholar 

  35. Sun, Z., Ma, J., Lu, X.-M., Wang, X.G.: Phys. Rev. A 82, 022306 (2010)

    Article  ADS  Google Scholar 

  36. Aubry, S., André, G.: Ann. Isr. Phys. Soc. 3, 133 (1980)

    Google Scholar 

  37. Soukoulis, C.M., Economou, E.N.: Phys. Rev. Lett. 48, 1043 (1982)

    Article  ADS  Google Scholar 

  38. Sun, J.Z., Wang, C.K.: Phys. Rev. B 43, 8587 (1991)

    Article  ADS  Google Scholar 

  39. Zhou, P.Q., Fu, X.J., Lu, C.H., Guo, Z.Z., Liu, Y.Y.: Z. Phys. B: Condens. Matter., 100321 (1996)

  40. Chao, K.A., Riklund, R., Liu, Y.Y.: Phys. Rev. B 32, 5979 (1985)

    Article  ADS  Google Scholar 

  41. Zheng, Z.B., Zhu, K.: J. Phys. C: Solid State Phys. 19, L695 (1986)

    Article  ADS  Google Scholar 

  42. Zheng, Z.B., Zhu, K.: Acta Phys. Sinica 36, 632 (1987)

    Google Scholar 

  43. Liu, Y.Y., Zhou, Y.C.: J. Phys.: Condens. Matter. 1, 2009 (1989)

    ADS  Google Scholar 

  44. Sun, J.Z.: Phys. Rev. B 40, 8270 (1989)

    Article  ADS  Google Scholar 

  45. Jitomirskaya, S.Y.: Ann. Math. 150, 1159 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  46. Aulbach, C., Wobst, A., Ingold, G.-L., Hänggi, P., Varga, I.: New J. Phys. 6, 70 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National 973 Projects of China (Grants No. 2011CB922101), the Natural Science Foundation of China (Grants Nos. 11234005, 11374147), and the Priority Academic Program Development of Jiangsu Higher Education Institutions, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. M. Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X.M., Du, Z.Z., Cheng, W.W. et al. Quantum Fisher Information of Localization Transitions in One-Dimensional Systems. Int J Theor Phys 54, 3033–3043 (2015). https://doi.org/10.1007/s10773-015-2541-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-015-2541-2

Keywords

Navigation