Advertisement

International Journal of Theoretical Physics

, Volume 54, Issue 9, pp 3033–3043 | Cite as

Quantum Fisher Information of Localization Transitions in One-Dimensional Systems

  • X. M. Liu
  • Z. Z. Du
  • W. W. Cheng
  • J.-M. Liu
Article

Abstract

The concept of quantum Fisher information (QFI) is used to characterize the localization transitions in three representative one-dimensional models. It is found that the localization transition in each model can be distinctively illustrated by the evolution of QFI. For the Aubry-André model, the QFI exhibits an inflexion at the boundary between the extended states and localized ones. In the t 1t 2 model, the QFI has a transition point separating the extended states from the localized states, while the mobility edge of the QFI is energy dependent. Furthermore, nine energy bands in the Soukoulis-Economou (S-E) model can be clearly revealed by the QFI with global mobility edges and local mobility edges. The present work demonstrates the implication of the QFI as a general fingerprint to characterize the localization transitions.

Keywords

Quantum fisher information Localization transiton Mobility edges Localized states 

Notes

Acknowledgments

This work was supported by the National 973 Projects of China (Grants No. 2011CB922101), the Natural Science Foundation of China (Grants Nos. 11234005, 11374147), and the Priority Academic Program Development of Jiangsu Higher Education Institutions, China.

References

  1. 1.
    Sarma, S.D., He, S., Xie, X.C.: Phys. Rev. B 41, 5544 (1990)CrossRefADSGoogle Scholar
  2. 2.
    Sarma, S.D., He, S., Xie, X.C.: Phys. Rev. Lett. 61, 2144 (1988)CrossRefADSGoogle Scholar
  3. 3.
    Biddle, J., Sarma, S.D.: Phys. Rev. Lett. 104, 070601 (2010)CrossRefADSGoogle Scholar
  4. 4.
    Biddle, J., Priour, D.J. Jr, Wang, B., Sarma, S.D.: Phys. Rev. B 83, 075105 (2011)CrossRefADSGoogle Scholar
  5. 5.
    Faez, S., Strybulevych, A., Page, J.H., Lagendijk, A., van Tiggelen, B.A.: Phys. Rev. Lett. 103, 155703 (2009)CrossRefADSGoogle Scholar
  6. 6.
    Aulbach, C., Wobst, A., Ingold, G., Hänggi, P., Varga, I.: New J. Phys. 6, 70 (2004)CrossRefADSGoogle Scholar
  7. 7.
    Billy, J., Josse, V., Zuo, Z.C., Bernard, A., Hambrecht, B., Lugan, P., Clment, D., Sanchez-Palencia, L., Bouyer, P., Aspect, A.: Nature 453, 891 (2008)CrossRefADSGoogle Scholar
  8. 8.
    Zhang, W., Yang, R., Zhao, Y., Duan, S.Q., Zhang, P., Ulloa, S.E.: Phys. Rev. B 81, 214202 (2010)CrossRefADSGoogle Scholar
  9. 9.
    Shima, H., Nomura, T., Nakayama, T.: Phys. Rev. B 70, 075116 (2004)CrossRefADSGoogle Scholar
  10. 10.
    Larcher, M., Modugno, M., Dalfovo, F.: Phys. Rev. A 83, 013624 (2011)CrossRefADSGoogle Scholar
  11. 11.
    Bilas, N., Pavloff, N.: Eur. Phys. J.D 40, 387 (2006)CrossRefADSGoogle Scholar
  12. 12.
    Yedjour, A., van Tiggelen, B.A.: Eur. Phys. J. D 59, 249 (2010)CrossRefADSGoogle Scholar
  13. 13.
    Moratti, M., Modugno, M.: Eur. Phys. J. D 66, 138 (2012)CrossRefADSGoogle Scholar
  14. 14.
    de Moura, F.A.B.F., Fulco, U.L., Lyra, M.L., Domnguez-Adamed, F., Albuquerque, E.L.: Physica A 390, 535 (2011)CrossRefADSGoogle Scholar
  15. 15.
    Djeraba, A., Senouci, K., Zekri, N.: Physica B 405, 1558 (2010)CrossRefADSGoogle Scholar
  16. 16.
    Avgin, I., Huber, D.L.: Physica B 406, 1906 (2011)CrossRefADSGoogle Scholar
  17. 17.
    de Moura, F.A.B.F., Lyra, M.L.: Phys. Rev. Lett. 81, 3735 (1998)CrossRefADSGoogle Scholar
  18. 18.
    Albrecht, C., Wimberger, S.: Phys. Rev. B 85, 045107 (2012)CrossRefADSGoogle Scholar
  19. 19.
    Lahini, Y., Pugatch, R., Pozzi, F., Sorel, M., Morandotti, R., Davidson, N., Silberberg, Y.: Phys. Rev. Lett. 103, 013901 (2009)CrossRefADSGoogle Scholar
  20. 20.
    Kraus, Y. E., Lahini, Y., Ringel, Z., Verbin, M., Zilberberg, O.: Phys. Rev. Lett. 109, 106402 (2012)CrossRefADSGoogle Scholar
  21. 21.
    Cheng, W.W., Gong, L.Y., Shan, C.J., Sheng, Y.B., Zhao, S.M.: Eur. Phys. J. D 67, 121 (2013)CrossRefADSGoogle Scholar
  22. 22.
    Helstrom, C.W.: Quantum Detection and Estimation Theory. Academic Press, New York (1976)MATHGoogle Scholar
  23. 23.
    Holevo, A.S.: Statistical Structure of Quantum Theory. North-Holland, Amsterdam (1982)Google Scholar
  24. 24.
    Hübner, M.: Phys. Lett. A 163, 239 (1992); 179, 226 (1993)Google Scholar
  25. 25.
    Braunstein, S.L., Caves, C.M.: Phys. Rev. Lett. 72, 3439 (1994)MATHMathSciNetCrossRefADSGoogle Scholar
  26. 26.
    Braunstein, S., et al.: Ann. Phys. (NY) 247, 135 (1996)MATHMathSciNetCrossRefADSGoogle Scholar
  27. 27.
    Liu, D.S., Du, J., Huang, G.-Q.: Int. J. Theor. Phys. 51, 2113 (2012)MATHCrossRefGoogle Scholar
  28. 28.
    Li, N., Luo, S.L.: Phys. Rev. A 88, 014301 (2013)CrossRefADSGoogle Scholar
  29. 29.
    Hu, G.-J., Hu, X.-X.: Int. J. Theor. Phys. 53, 533 (2014)MATHCrossRefGoogle Scholar
  30. 30.
    Boixo, S., Monras, A.: Phys. Rev. Lett. 100, 100503 (2008)CrossRefADSGoogle Scholar
  31. 31.
    Hyllus, P., Laskowski, W., Kridchek, R., Schwemmer, C., Wieczorek, W., Weinfurter, H., Pezze, L., Smerzi, A.: Phys. Rev. A 85, 022321 (2012)CrossRefADSGoogle Scholar
  32. 32.
    Monras, A., Paris, M.G.A.: Phys. Rev. Lett. 98, 160401 (2007)CrossRefADSGoogle Scholar
  33. 33.
    Ma, J., Huang, Y.-X., Wang, X.G., Sun, C.P.: Phys. Rev. A 84, 022302 (2011)CrossRefADSGoogle Scholar
  34. 34.
    Watanabe, Y., Sagawa, T., Ueda, M.: Phys. Rev. Lett. 104, 020401 (2010)CrossRefADSGoogle Scholar
  35. 35.
    Sun, Z., Ma, J., Lu, X.-M., Wang, X.G.: Phys. Rev. A 82, 022306 (2010)CrossRefADSGoogle Scholar
  36. 36.
    Aubry, S., André, G.: Ann. Isr. Phys. Soc. 3, 133 (1980)Google Scholar
  37. 37.
    Soukoulis, C.M., Economou, E.N.: Phys. Rev. Lett. 48, 1043 (1982)CrossRefADSGoogle Scholar
  38. 38.
    Sun, J.Z., Wang, C.K.: Phys. Rev. B 43, 8587 (1991)CrossRefADSGoogle Scholar
  39. 39.
    Zhou, P.Q., Fu, X.J., Lu, C.H., Guo, Z.Z., Liu, Y.Y.: Z. Phys. B: Condens. Matter., 100321 (1996)Google Scholar
  40. 40.
    Chao, K.A., Riklund, R., Liu, Y.Y.: Phys. Rev. B 32, 5979 (1985)CrossRefADSGoogle Scholar
  41. 41.
    Zheng, Z.B., Zhu, K.: J. Phys. C: Solid State Phys. 19, L695 (1986)CrossRefADSGoogle Scholar
  42. 42.
    Zheng, Z.B., Zhu, K.: Acta Phys. Sinica 36, 632 (1987)Google Scholar
  43. 43.
    Liu, Y.Y., Zhou, Y.C.: J. Phys.: Condens. Matter. 1, 2009 (1989)ADSGoogle Scholar
  44. 44.
    Sun, J.Z.: Phys. Rev. B 40, 8270 (1989)CrossRefADSGoogle Scholar
  45. 45.
    Jitomirskaya, S.Y.: Ann. Math. 150, 1159 (1999)MATHMathSciNetCrossRefGoogle Scholar
  46. 46.
    Aulbach, C., Wobst, A., Ingold, G.-L., Hänggi, P., Varga, I.: New J. Phys. 6, 70 (2004)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • X. M. Liu
    • 1
    • 2
  • Z. Z. Du
    • 1
  • W. W. Cheng
    • 1
  • J.-M. Liu
    • 1
  1. 1.Laboratory of Solid State Microstructure and Innovation Center of Advanced MicrostructuresNanjing UniversityNanjingChina
  2. 2.Institute of Mathematical and Physical SciencesJiangsu University of Science and TechnologyZhenjiangChina

Personalised recommendations