Advertisement

International Journal of Theoretical Physics

, Volume 54, Issue 8, pp 2932–2941 | Cite as

Homothetic Motion in a Bianchi Type-I Model in Lyra Geometry

  • Ragab M. Gad
Article

Abstract

In this paper we study a homothetic vector field of a Bianchi type-I model based on Lyra geometry. The cases when a displacement vector is function of t and when it is constant are considered. In both two cases we investigate the equation of state. A comparison between the obtained results, using Lyra geometry, and that have obtained previously in the context of General Relativity, based on Riemannian geometry, will be given.

Keywords

Bianchi type-I Homothetic vector field Lyra geometry Matter collineations Baratropic equation of state 

Notes

Acknowledgments

This work was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under grant No. (965-017-D1434). The author, therefore, acknowledge with thanks DSR technical and financial support.

References

  1. 1.
    Weitzenböck, R.: Invariantentheorie, Noordhoff, Groningen (1923)Google Scholar
  2. 2.
    Hall, G.S.: Symmetries and Curvature Structure in General RelativityWorld Scientific, Singapore (2004)Google Scholar
  3. 3.
    Stephani, H., Kramer, D., MacCallum,M.A.H., Hoenselears, C., Herlt, E.: Exact Solutions of Einstein’s Field Equations. Cambridge University Press, Cambridge (2003)Google Scholar
  4. 4.
    Shabbir, G., Mehmood, A.B.: Mod. Phys. Lett. A 22, 807 (2007)MathSciNetADSCrossRefMATHGoogle Scholar
  5. 5.
    Hall, G.S.: Grav. Cosmol. 2, 270 (1996)MATHGoogle Scholar
  6. 6.
    Hall, G.S.: Gen. Relativ. Gravit. 30, 1099 (1998)ADSCrossRefMATHGoogle Scholar
  7. 7.
    Cahill, M.E., Taub, A.H.: Commun. Math. Phys. 21, 1 (1971)MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    Eardley, D.M.: Commun. Math. Phys. 37, 287 (1974)MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    Eardley, D.M.: Phys. Rev. Lett. 33, 442 (1974)ADSCrossRefGoogle Scholar
  10. 10.
    Carter, B., Henriksen, R.N.: J. Math. Phys. 32, 2580 (1991)MathSciNetADSCrossRefMATHGoogle Scholar
  11. 11.
    Sintes, A.M., Benotit, P.M., Coley, A.A.: Gen. Relativ. Gravit. 33, 1863 (2001)ADSCrossRefMATHGoogle Scholar
  12. 12.
    Wainwright, J.: Gen. Relativ. Gravit. 32, 1041 (2000)MathSciNetADSCrossRefMATHGoogle Scholar
  13. 13.
    Wesson, P.S.: J. Math. Phys. 19, 2283 (1978)ADSCrossRefGoogle Scholar
  14. 14.
    Collins, M.E., Lang, J.M.: Class. Quantum Gravity 4, 61 (1987)MathSciNetADSCrossRefMATHGoogle Scholar
  15. 15.
    Sussman, R.A.: J. Math. Phys. 32, 223 (1991)MathSciNetADSCrossRefMATHGoogle Scholar
  16. 16.
    Barreto, W., Ovalle, J., Rodriguez, B.: Gen. Relativ. Gravit. 30, 15 (1998)MathSciNetADSCrossRefMATHGoogle Scholar
  17. 17.
    Ori, A., Piran, T.: Phys. Rev. D 42, 1068 (1990)MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    Gad, R.M.: Il Nuovo Cimento B 11, 533 (2002)MathSciNetADSGoogle Scholar
  19. 19.
    Gad, R.M.: Il Nuovo Cimento B 124, 61 (2009)Google Scholar
  20. 20.
    Gad, R.M., Hassan, M.M.: Il Nuovo Cimento B 12, 759 (2003)ADSGoogle Scholar
  21. 21.
    Sharif, M., Majeed, B.: Commun. Theor. Phys. 52, 435 (2009)MathSciNetADSCrossRefMATHGoogle Scholar
  22. 22.
    Shabbir, G., Khan, S.: Mod. Phys. Lett. A 25, 55 (2010)MathSciNetADSCrossRefMATHGoogle Scholar
  23. 23.
    Shabbir, G., Khan, S.: Mod. Phys. Lett. A 25, 525 (2010)ADSCrossRefMATHGoogle Scholar
  24. 24.
    Shabbir, G., Khan, S.: Mod. Phys. Lett. A 25, 1733 (2010)MathSciNetADSCrossRefMATHGoogle Scholar
  25. 25.
    Shabbir, G., Khan, S.: Commun. Theor. Phys. 54, 469 (2010)MathSciNetADSCrossRefMATHGoogle Scholar
  26. 26.
    Shabbir, G., Khan, S., Ali, A.: Commun. Theor. Phys. 55, 268 (2011)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Sharif, M., Amir, M.J.: Mod. Phys. Lett. A 23, 963 (2008)MathSciNetADSCrossRefMATHGoogle Scholar
  28. 28.
    Shabbir, G., Khan, S.: Rom. J. Phys. 57, 571 (2012)MathSciNetGoogle Scholar
  29. 29.
    Shabbir, G., Khan, A., Khan, S.: Int. J. Theor. Phys. 52, 1182 (2013)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Khan, S., Hussain, T., Khan, A.: Rom. J. Phys. 59, 488 (2014)Google Scholar
  31. 31.
    Khan, S., Hussain, T., Khan, A.: Eur. Phys. J. Plus 129, 1 (2014)CrossRefGoogle Scholar
  32. 32.
    Shabbir, G., Ali, A., Khan, S.: Chin. Phys. B 20, 070401 (2011)CrossRefGoogle Scholar
  33. 33.
    Lyra, G.: Math. Z. 54, 52 (1951)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Scheibe, E.: Math. Z. 57, 65 (1952)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Gad, R.M., Alofi, A.S.: Mod. Phys. Lett. A 22, 1450116 (2014)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Rosquist, R., Jantzen, R.: Class. Quantum Gravity 2, L129 (1985)MathSciNetADSCrossRefMATHGoogle Scholar
  37. 37.
    Coly, A.A.: Dynamical System and Cosmology. Kluwer Academic, Dordrecht (2003)CrossRefGoogle Scholar
  38. 38.
    Belinchon, J.A.: Cent. Eur. J. Phys. 10, 789 (2012)Google Scholar
  39. 39.
    Belinchon, J.A.: Astrophys. Space Sci. 346, 237 (2013)ADSCrossRefMATHGoogle Scholar
  40. 40.
    Sharif, M.: Nuovo Cimento B 116, 673 (2001)Google Scholar
  41. 41.
    Sharif, M.: Astrophys. Space Sci. 278, 447 (2001)ADSCrossRefGoogle Scholar
  42. 42.
    Sharif, M.: Int. J. Mod. Phys. D 14, 1675 (2005)MathSciNetADSCrossRefMATHGoogle Scholar
  43. 43.
    Tsamparlis, M., Apostolopoulos, P.S.: Gen. Relativ. Gravity 36, 47 (2004)MathSciNetADSCrossRefMATHGoogle Scholar
  44. 44.
    Ori, A., Piran, T.: Phys. Rev. D 42, 1068 (1990)MathSciNetADSCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Mathematics Department, Faculty of ScienceKing Abdulaziz UniversityJeddahKingdom of Saudi Arabia
  2. 2.Mathematics Department, Faculty of ScienceMinia UniversityEl-MiniaEgypt

Personalised recommendations