International Journal of Theoretical Physics

, Volume 54, Issue 8, pp 2839–2854 | Cite as

Entanglement Criteria of Two Two-Level Atoms Interacting with Two Coupled Modes

  • Hamid Reza Baghshahi
  • Mohammad Kazem Tavassoly
  • Mohammad Javad Faghihi


In this paper, we study the interaction between two two-level atoms and two coupled modes of a quantized radiation field in the form of parametric frequency converter injecting within an optical cavity enclosed by a medium with Kerr nonlinearity. It is demonstrated that, by applying the Bogoliubov-Valatin canonical transformation, the introduced model is reduced to a well-known form of the generalized Jaynes-Cummings model. Then, under particular initial conditions for the atoms (in a coherent superposition of its ground and upper states) and the fields (in a standard coherent state) which may be prepared, the time evolution of state vector of the entire system is analytically evaluated. In order to understand the degree of entanglement between subsystems (atom-field and atom-atom), the dynamics of entanglement through different measures, namely, von Neumann reduced entropy, concurrence and negativity is evaluated. In each case, the effects of Kerr nonlinearity and detuning parameter on the above measures are numerically analyzed, in detail. It is illustrated that the amount of entanglement can be tuned by choosing the evolved parameters, appropriately.


Atom-field entanglement Atom-atom entanglement Jaynes-Cummings model Two coupled modes Nonclassical state 


  1. 1.
    Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)ADSCrossRefMATHGoogle Scholar
  2. 2.
    Schrödinger, E.: Die gegenwärtige situation in der quantenmechanik. Naturwissenschaften 23, 823 (1935)ADSCrossRefGoogle Scholar
  3. 3.
    Bell, J.S.: On the einstein podolsky rosen paradox. Phys. 1, 195 (1964)Google Scholar
  4. 4.
    Bennett, C.H., DiVincenzo, D.P.: Quantum information and computation. Nature 404, 247 (2000)ADSCrossRefMATHGoogle Scholar
  5. 5.
    Bengtsson, I., życzkowski, K.: Geometry of quantum states: An Introduction to Quantum Entanglement. Cambridge University Press, Cambridge (2006)CrossRefGoogle Scholar
  6. 6.
    Li, X., Pan, Q., Jing, J., Zhang, J., Xie, C., Peng, K.: Quantum dense coding exploiting a bright einstein-podolsky-rosen beam. Phys. Rev. Lett. 88, 047904 (2002)ADSCrossRefGoogle Scholar
  7. 7.
    Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels. Phys. Rev. Lett. 70, 1895 (1993)MathSciNetADSCrossRefMATHGoogle Scholar
  8. 8.
    Abdi, M., Pirandola, S., Tombesi, P., Vitali, D.: Entanglement swapping with local certification: Application to remote micromechanical resonators. Phys. Rev. Lett. 109, 143601 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    Richter, T., Vogel, W.: Nonclassical characteristic functions for highly sensitive measurements. Phys. Rev. A 76, 053835 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    Murao, M., Jonathan, D., Plenio, M.B., Vedral, V.: Quantum telecloning and multiparticle entanglement. Phys. Rev. A 59, 156 (1999)ADSCrossRefGoogle Scholar
  11. 11.
    Ollivier, H., Zurek, W.H.: Quantum discord: A measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)ADSCrossRefGoogle Scholar
  12. 12.
    Benenti, G., Casati, G., Strini, G.: Principles of Quantum Computation and Information. Vols I and II. World Scientific (2007)Google Scholar
  13. 13.
    Yu, T., Eberly, J.H.: Sudden death of entanglement. Science 323, 598 (2009)MathSciNetADSCrossRefMATHGoogle Scholar
  14. 14.
    Yu, T., Eberly, J.H.: Finite-time disentanglement via spontaneous emission. Phys. Rev. Lett. 93, 140404 (2004)ADSCrossRefGoogle Scholar
  15. 15.
    Yu, T., Eberly, J.H.: Quantum open system theory: Bipartite aspects. Phys. Rev. Lett. 97, 140403 (2006)ADSCrossRefGoogle Scholar
  16. 16.
    Laurat, J., Choi, K.S., Deng, H., Chou, C.W., Kimble, H.J.: Heralded entanglement between atomic ensembles: Preparation, decoherence, scaling. Phys. Rev. Lett. 99, 180504 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    Ficek, Z., Tanaś, R.: Delayed sudden birth of entanglement. Phys. Rev. A 77, 054301 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    Berrada, K.: Quantum metrology with su(1,1) coherent states in the presence of nonlinear phase shifts. Phys. Rev. A 88, 013817 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    Gerry, C.C., Mimih, J., Benmoussa, A.: Maximally entangled coherent states and strong violations of bell-type inequalities. Phys. Rev. A 80, 022111 (2009)MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    Torlai, G., McKeown, G., Marek, P., Filip, R., Jeong, H., Paternostro, M., De Chiara, G.: Violation of bell’s inequalities with preamplified homodyne detection. Phys. Rev. A 87, 052112 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    Auffeves, A., Maioli, P., Meunier, T., Gleyzes, S., Nogues, G., Brune, M., Raimond, J.M., Haroche, S.: Entanglement of a mesoscopic field with an atom induced by photon graininess in a cavity. Phys. Rev. Lett. 91, 230405 (2003)ADSCrossRefGoogle Scholar
  22. 22.
    Zheng, S.B., Guo, G.C.: Efficient scheme for two-atom entanglement and quantum information processing in cavity qed. Phys. Rev. Lett. 85, 2392 (2000)ADSCrossRefGoogle Scholar
  23. 23.
    Phoenix, S.J.D., Barnett, S.M.: Non-local interatomic correlations in the micromaser. J. Mod. Opt. 40, 979 (1993)MathSciNetADSCrossRefGoogle Scholar
  24. 24.
    Prants, S.V., Uleysky, M.Y., Argonov, V.Y.: Entanglement, fidelity, and quantum-classical correlations with an atom moving in a quantized cavity field. Phys. Rev. A 73, 023807 (2006)ADSCrossRefGoogle Scholar
  25. 25.
    Tesfa, S.: Entanglement amplification in a nondegenerate three-level cascade laser. Phys. Rev. A 74, 043816 (2006)ADSCrossRefGoogle Scholar
  26. 26.
    Sainz, I., Björk, G.: Entanglement invariant for the double jaynes-cummings model. Phys. Rev. A 76, 042313 (2007)ADSCrossRefGoogle Scholar
  27. 27.
    Ma, J.M., Jiao, Z.Y., Li, N.: Entropy and entanglement of a single-mode vacuum field interacting with a Ξ-type three-level atom with detuning. Int. J. Theor. Phys. 47, 350356 (2008)MathSciNetGoogle Scholar
  28. 28.
    Yadollahi, F., Tavassoly, M.K.: A theoretical scheme for generation of gazeau–klauder coherent states via intensity-dependent degenerate raman interaction. Opt. Commun. 284 (2), 608 (2011)ADSCrossRefGoogle Scholar
  29. 29.
    Tavassoly, M.K., Yadollahi, F.: Dynamics of states in the nonlinear interaction regime between a three-level atom and generalized coherent states and their non-classical features. Int. J. Mod. Phys. B 26, 1250027 (2012)ADSCrossRefGoogle Scholar
  30. 30.
    Sahrai, M., Tajalli, H.: Sub-half-wavelength atom localization of a v-type three-level atom via relative phase. J. Opt. Soc. Am. B 30, 512 (2013)ADSCrossRefGoogle Scholar
  31. 31.
    Baghshahi, H.R., Tavassoly, M.K.: Entanglement, quantum statistics and squeezing of two Ξ-type three-level atoms interacting nonlinearly with a single-mode field. Phys. Scr. 89, 075101 (2014)ADSCrossRefGoogle Scholar
  32. 32.
    Obada, A.S.F., Ahmed, M.M.A., Khalil, E.M., Ali, S.I.: Entangled two two-level atoms interacting with a cavity field in the presence of the stark shift terms. Opt. Commun. 287, 215 (2013)ADSCrossRefGoogle Scholar
  33. 33.
    Joshi, A.: Nonlinear dynamical evolution of the driven two-photon jaynes-cummings model. Phys. Rev. A 62, 043812 (2000)ADSCrossRefMATHGoogle Scholar
  34. 34.
    Bashkirov, E.K., Rusakova, M.S.: Atom-field entanglement in two-atom jaynes–cummings model with nondegenerate two-photon transitions. Opt. Commun. 281, 4380 (2008)ADSCrossRefGoogle Scholar
  35. 35.
    Baghshahi, H. R., Tavassoly, M. K., Behjat, A.: Dynamics of entropy and nonclassicality features of the interaction between a ◇-type four-level atom and a single-mode field in the presence of intensity-dependent. Coupling and kerr nonlinearity. Commun. Theor. Phys. 62, 430 (2014)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Bužek, V.: Jaynes-cummings model with intensity-dependent coupling interacting with holstein-primakoff su(1,1) coherent state. Phys. Rev. A 39, 3196 (1989)ADSCrossRefGoogle Scholar
  37. 37.
    Sivakumar, S.: Nonlinear jaynes–cummings model of atom–field interaction. Int. J. Theor. Phys. 43, 2405 (2004)MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Fink, J.M., Göppl, M., Baur, M., Bianchetti, R., Leek, P.J., Blais, A., Wallraff, A.: Climbing the jaynes–cummings ladder and observing its \(\sqrt {n}\) nonlinearity in a cavity qed system. Nature 454, 315 (2008)ADSCrossRefGoogle Scholar
  39. 39.
    Baghshahi, H.R., Tavassoly, M.K., Faghihi, M.J.: Entanglement analysis of a two-atom nonlinear JaynesCummings model with nondegenerate two-photon transition, Kerr nonlinearity, and two-mode Stark shift. Laser Phys. 24, 125203 (2014)ADSCrossRefGoogle Scholar
  40. 40.
    Agarwal, G.S., Puri, R.R.: Collapse and revival phenomenon in the evolution of a resonant field in a kerr-like medium. Phys. Rev. A 39, 2969 (1989)ADSCrossRefGoogle Scholar
  41. 41.
    Obada, A.S., Mohammed, F., Hessian, H., Mohamed, A.B.: Entropies and entanglement for initial mixed state in the multi-quanta jc model with the stark shift and kerr-like medium. Int. J. Theor. Phys. 46, 1027 (2007)CrossRefMATHGoogle Scholar
  42. 42.
    Abdel-Aty, M.: Quantum phase entropy and entanglement of a multiphoton three-level atom near the edge of a photonic band gap. Laser Phys. 16, 1381 (2006)ADSCrossRefGoogle Scholar
  43. 43.
    Hessian, H.A., Hashem, M.: Entanglement and purity loss for the system of two 2-level atoms in the presence of the stark shift. Quantum Inf. Process 10(4), 543 (2011)MathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    Faghihi, M.J., Tavassoly, M.K.: Dynamics of entropy and nonclassical properties of the state of a Λ-type three-level atom interacting with a single-mode cavity field with intensity-dependent coupling in a Kerr medium. J. Phys. B: At. Mol. Opt. Phys. 45, 035502 (2012)ADSCrossRefGoogle Scholar
  45. 45.
    Miry, S.R., Tavassoly, M.K.: Generation of a class of su (1,1) coherent states of the Gilmore-Perelomov type and a class of su (2) coherent states and their superposition. Phys. Scr. 85, 035404 (2012)ADSCrossRefGoogle Scholar
  46. 46.
    Miry, S.R., Shahpari, M., Tavassoly, M.K.: Nonlinear elliptical states: Generation and nonclassical properties. Opt. Commun. 306, 49 (2013)ADSCrossRefGoogle Scholar
  47. 47.
    Honarasa, G.R., Tavassoly, M.K.: Generalized deformed kerr states and their physical properties. Phys. Scr. 86, 035401 (2012)ADSCrossRefGoogle Scholar
  48. 48.
    Faghihi, M.J., Tavassoly, M.K., Hooshmandasl, M.R.: Entanglement dynamics and position-momentum entropic uncertainty relation of a Λ-type three-level atom interacting with a two-mode cavity field in the presence of nonlinearities. J. Opt. Soc. Am. B 30(5), 1109 (2013)ADSCrossRefGoogle Scholar
  49. 49.
    Faghihi, M.J., Tavassoly, M.K.: Number-phase entropic squeezing and nonclassical properties of a three-level atom interacting with a two-mode field: intensity-dependent coupling, deformed kerr medium, and detuning effects. J. Opt. Soc. Am. B 30, 2810 (2013)ADSCrossRefGoogle Scholar
  50. 50.
    Faghihi, M.J., Tavassoly, M.K.: Quantum entanglement and position–momentum entropic squeezing of a moving Lambda-type three-level atom interacting with a single-mode quantized field with intensity-dependent coupling. J. Phys. B: At. Mol. Opt. Phys. 46, 145506 (2013)ADSCrossRefGoogle Scholar
  51. 51.
    Hekmatara, H., Tavassoly, M.K.: Sub-poissonian statistics, population inversion and entropy squeezing of two two-level atoms interacting with a single-mode binomial field: intensity-dependent coupling regime. Opt. Commun. 319, 121 (2014)ADSCrossRefGoogle Scholar
  52. 52.
    Baghshahi, H.R., Tavassoly, M.K., Behjat, A.: Entropy squeezing and atomic inversion in the k-photon JaynesCummings model in the presence of Stark shift and Kerr medium: A full nonlinear approach Chin. Phys. B. 23, 074203 (2014)Google Scholar
  53. 53.
    Abdalla, M.S., Obada, A.S.F., Abdel-Aty, M.: Von neumann entropy and phase distribution of two mode parametric amplifier interacting with a single atom. Ann. Phys. 318, 266 (2005)MathSciNetADSCrossRefMATHGoogle Scholar
  54. 54.
    Abdel-Aty, M., Abdalla, M.S., Sanders, B.C.: Tripartite entanglement dynamics for an atom interacting with nonlinear couplers. Phys. Lett. A 373, 315 (2009)ADSCrossRefMATHGoogle Scholar
  55. 55.
    Faghihi, M.J., Tavassoly, M.K., Bagheri, M.H.: Tripartite entanglement dynamics and entropic squeezing of a three-level atom interacting with a bimodal cavity field. Laser Phys. 24, 045202 (2014)ADSCrossRefGoogle Scholar
  56. 56.
    Faghihi, M.J., Tavassoly, M.K., Hatami, M.: Dynamics of entanglement of a three-level atom in motion interacting with two coupled modes including parametric down conversion. Physica A 407, 100 (2014)MathSciNetADSCrossRefGoogle Scholar
  57. 57.
    Khalil, E.M., Abdalla, M.S., Obada, A.S.F.: Entropy and variance squeezing of two coupled modes interacting with a two-level atom: Frequency converter type. Ann. Phys. 321, 421 (2006)ADSCrossRefGoogle Scholar
  58. 58.
    Sanders, B.C.: Entangled coherent states. Phys. Rev. A 45, 6811 (1992)ADSCrossRefGoogle Scholar
  59. 59.
    Sanders, B.C.: Erratum: Entangled coherent states [phys. rev. a 45, 6811 (1992)]. Phys. Rev. A 46, 2966 (1992)ADSCrossRefGoogle Scholar
  60. 60.
    Scully, M.O., Zubairy, M.S.: Quantum Optics. Cambridge University Press, Cambridge (1997)CrossRefGoogle Scholar
  61. 61.
    Svozil, K.: Squeezed fermion states. Phys. Rev. Lett. 65, 3341 (1990)MathSciNetADSCrossRefMATHGoogle Scholar
  62. 62.
    Jáuregui, R., Récamier, J.: Iterative Bogoliubov transformations and anharmonic oscillators. Phys. Rev. A 46, 2240 (1992)MathSciNetADSCrossRefGoogle Scholar
  63. 63.
    Schrieffer, J.R.: Theory of Superconductivity. WA Benjamin, New York (1964)MATHGoogle Scholar
  64. 64.
    Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)MathSciNetADSCrossRefMATHGoogle Scholar
  65. 65.
    Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)ADSCrossRefGoogle Scholar
  66. 66.
    Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002)ADSCrossRefGoogle Scholar
  67. 67.
    Vedral, V., Plenio, M.B., Jacobs, K., Knight, P.L.: Statistical inference, distinguishability of quantum states, and quantum entanglement. Phys. Rev. A 56, 4452 (1997)ADSCrossRefGoogle Scholar
  68. 68.
    Uhlmann, A.: Fidelity and concurrence of conjugated states. Phys. Rev. A 62, 032307 (2000)MathSciNetADSCrossRefGoogle Scholar
  69. 69.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2010)CrossRefMATHGoogle Scholar
  70. 70.
    Araki, H., Lieb, E.H.: Entropy inequalities. Commun. Math. Phys. 18, 160 (1970)MathSciNetADSCrossRefGoogle Scholar
  71. 71.
    Phoenix, S.J.D., Knight, P.L.: Periodicity, phase, and entropy in models of two-photon resonance. J. Opt. Soc. Am. B 7, 116 (1990)ADSCrossRefGoogle Scholar
  72. 72.
    Barnett, S.M., Phoenix, S.J.D.: Information theory, squeezing, and quantum correlations. Phys. Rev. A 44, 535 (1991)ADSCrossRefGoogle Scholar
  73. 73.
    Childs, L.N.: A Concrete Introduction to Higher Algebra. Undergraduate Texts in Mathematics. Springer (2009)Google Scholar
  74. 74.
    Hill, S., Wootters, W.K.: Entanglement of a pair of quantum bits. Phys. Rev. Lett. 78, 5022 (1997)ADSCrossRefGoogle Scholar
  75. 75.
    Rungta, P., Bužek, V., Caves, C.M., Hillery, M., Milburn, G.J.: Universal state inversion and concurrence in arbitrary dimensions. Phys. Rev. A 64, 042315 (2001)MathSciNetADSCrossRefMATHGoogle Scholar
  76. 76.
    DeVoe, R.G., Brewer, R.G.: Observation of superradiant and subradiant spontaneous emission of two trapped ions 76, 2049 (1996)Google Scholar
  77. 77.
    Hagley, E., Maitre, X., Nogues, G., Wunderlich, C., Brune, M., Raimond, J.M., Haroche, S.: Generation of Einstein-Podolsky-Rosen pairs of atoms. Phys. Rev. Lett. 79, 1 (1997)ADSCrossRefGoogle Scholar
  78. 78.
    Peres, A.: Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413 (1996)MathSciNetADSCrossRefMATHGoogle Scholar
  79. 79.
    Horodecki, M., Horodecki, P., Horodecki, R.: Separability of mixed states: necessary and sufficient conditions. Phys. Lett. A 223, 1 (1996)MathSciNetADSCrossRefMATHGoogle Scholar
  80. 80.
    Lee, S., Chi, D.P., Oh, S.D., Kim, J.: Convex-roof extended negativity as an entanglement measure for bipartite quantum systems. Phys. Rev. A 68, 062304 (2003)ADSCrossRefGoogle Scholar
  81. 81.
    Akhtarshenas, S.J., Farsi, M.: Negativity as entanglement degree of the Jaynes-Cummings model. Phys. Scr. 75, 608 (2007)MathSciNetADSCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Hamid Reza Baghshahi
    • 1
    • 2
    • 3
  • Mohammad Kazem Tavassoly
    • 1
    • 2
  • Mohammad Javad Faghihi
    • 4
  1. 1.Atomic and Molecular Group, Faculty of PhysicsYazd UniversityYazdIran
  2. 2.The Laboratory of Quantum Information ProcessingYazd UniversityYazdIran
  3. 3.Department of Physics, Faculty of ScienceVali-e-Asr University of RafsanjanRafsanjanIran
  4. 4.Physics and Photonics DepartmentGraduate University of Advanced TechnologyMahanIran

Personalised recommendations