Advertisement

International Journal of Theoretical Physics

, Volume 54, Issue 8, pp 2632–2643 | Cite as

On the Separability Criterion of Bipartite States with Certain Non-Hermitian Operators

  • N. Ananth
  • V. K. Chandrasekar
  • M. Senthilvelan
Article
  • 116 Downloads

Abstract

We construct a density matrix whose elements are written in terms of expectation values of non-Hermitian operators and their products for arbitrary dimensional bipartite states. We then show that any expression which involves matrix elements can be reformulated by the expectation values of these non-Hermitian operators and vice versa. We consider the condition of pure states and pure product states and rewrite them in terms of expectation values and density matrix elements respectively. We utilize expectation values of these operators to present the condition for separability of C d C d bipartite states. With the help of our separability criterion we detect entanglement in certain classes of higher dimensional bipartite states.

Keywords

Separability condition Bipartite state Non-Hermitian operators Density matrix 

References

  1. 1.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)Google Scholar
  2. 2.
    Peres, A.: Quantum Theory: Concepts and Methods. Kluwer Academic Publishers, New York (2002)CrossRefGoogle Scholar
  3. 3.
    Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Rev. Mod. Phys. 81, 865 (2009)MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    Gühne, O., Tóth, G.: Phys. Rep. 474, 1 (2009)MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    Doherty, A.C., Parrilo, P.A., Spedalieri, F.M.: Phys. Rev. A 69, 022308 (2004)ADSCrossRefGoogle Scholar
  6. 6.
    Bruß, D.: J. Math. Phys. 43, 4237 (2002)MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    Peres, A.: Phys. Rev. Lett. 77, 1413 (1996)MathSciNetADSCrossRefMATHGoogle Scholar
  8. 8.
    Horodecki, M., Horodecki, P., Horodecki, R.: Phys. Lett. A 223, 1 (1996)MathSciNetADSCrossRefMATHGoogle Scholar
  9. 9.
    Horodecki, P.: Phys. Lett. A 232, 333 (1997)MathSciNetADSCrossRefMATHGoogle Scholar
  10. 10.
    Rudolph, O.: Quantum Inf. Pro. 4, 219 (2005)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Gisin, N., Peres, A.: Phys. Lett. A 162, 15 (1992)MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    Collins, D., Gisin, N., Linden, N., Massar, S., Popescu, S.: Phys. Rev. Lett. 88, 040404 (2002)Google Scholar
  13. 13.
    Li, M., Fei, S.M.: Phys. Rev. Lett. 104, 240502 (2010)MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    Ha, K-C.: Phys. Rev. A 82, 014102 (2010)MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    Zhao, M.J., Ma, T., Fei, S.M., Wang, Z.X.: Phys. Rev. A 83, 052120 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    Chruściński, D., Kossakowski, A.: Phys. Rev. A 74, 022308 (2006)MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    Tóth, G., Simon, C., Cirac, J.I.: Phys. Rev. A 68, 062310 (2003)ADSCrossRefGoogle Scholar
  18. 18.
    Shchukin, E., Vogel, W.: Phys. Rev. Lett. 95, 230502 (2005)ADSCrossRefGoogle Scholar
  19. 19.
    Hillery, M., Zubairy, M.S.: Phys. Rev. Lett. 96, 050503 (2006)MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    Hillery, M., Zubairy, M.S.: Phys. Rev. A 74, 032333 (2006)ADSCrossRefGoogle Scholar
  21. 21.
    Hillery, M., Dung, H.T., Niset, J.: Phys. Rev. A 80, 052335 (2009)MathSciNetADSCrossRefGoogle Scholar
  22. 22.
    Hillery, M., Dung, H.T., Zheng, H.: Phys. Rev. A 81, 062322 (2010)MathSciNetADSCrossRefGoogle Scholar
  23. 23.
    Gühne, O., Seevinck, M.: New J. Phys. 12, 053002 (2010)CrossRefGoogle Scholar
  24. 24.
    Gao, T., Hong, Y.: Eur. Phys. J. D 61, 765 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    Lewenstein, M., Bruß, D., Cirac, J.I., Kraus, B., Kus, M., Samsonowicz, J., Sanpera, A., Tarrach, R.: J. Mod. Opt. 47, 2481 (2000)ADSMATHGoogle Scholar
  26. 26.
    Seevinck, M., Uffink, J.: Phys. Rev. A 78, 032101 (2008)MathSciNetADSCrossRefGoogle Scholar
  27. 27.
    Thew, R.T., Nemoto, K., White, A.G., Munro, W.J.: Phys. Rev. A 66, 012303 (2002)MathSciNetADSCrossRefGoogle Scholar
  28. 28.
    Pati, A.K., Singh, U., Sinha, U.: arXiv:1406.3007
  29. 29.
    Werner, R.F.: Phys. Rev. A 40, 4277 (1989)ADSCrossRefGoogle Scholar
  30. 30.
    Jones, S.J., Wiseman, H.M., Doherty, A.C.: Phys. Rev. A 76, 052116 (2007)MathSciNetADSCrossRefGoogle Scholar
  31. 31.
    Horodecki, M., Horodecki, P.: Phys. Rev. A 59, 4206 (1999)MathSciNetADSCrossRefGoogle Scholar
  32. 32.
    Li, M., Yan, T.J., Fei, S.M.: J. Phys. A : Math. Theor. 45, 035301 (2012)MathSciNetADSCrossRefGoogle Scholar
  33. 33.
    Bennett, C.H., DiVincenzo, D.P., Mor, T., Shor, P.W., Smolin, J.A., Terhal, B.M.: Phys. Rev. Lett. 82, 5385 (1999)MathSciNetADSCrossRefGoogle Scholar
  34. 34.
    Chen, K., Wu, L.A.: Quantum Inform. Comput. 3, 193 (2003)MATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • N. Ananth
    • 1
  • V. K. Chandrasekar
    • 2
  • M. Senthilvelan
    • 1
  1. 1.Centre for Nonlinear Dynamics, School of PhysicsBharathidasan UniversityTiruchirappalli - 620024India
  2. 2.Centre for Nonlinear Science & Engineering, School of Electrical & Electronics EngineeringSASTRA UniversityThanjavur - 613401India

Personalised recommendations