International Journal of Theoretical Physics

, Volume 54, Issue 8, pp 2562–2575 | Cite as

Tunneling of Conduction Band Electrons Driven by a Laser Field in a Double Quantum dot: An Open Systems Approach



In this paper, we investigate tunneling of conduction band electrons in a system of an asymmetric double quantum dot which interacts with an environment. First we consider the case in which the system only interacts with the environment and demonstrate that as time goes to infinity they both reach an equilibrium, which is expected, and there is always a maximum and minimum for the populations of the states of the system. Then we investigate the case in which an external resonant optical pulse (a laser) is applied to the system interacting with the environment. However, in this case for different intensities we have different populations of the states in equilibrium and as the intensity of the laser gets stronger, the populations of the states in equilibrium approach the same constant.


Open quantum system Quantum dot Double quantum dots 


  1. 1.
    Moltokov, S.N., Nazin, S.S.: JETP Lett. 63, 687 (1996)ADSCrossRefGoogle Scholar
  2. 2.
    Satio, H., Nishi, K., Ogura, I., Sogou, s., Sugomito, Y.: Appl. Phys. Lett. 69, 3140 (1996)ADSCrossRefGoogle Scholar
  3. 3.
    Harison, P.: Quantum Wells,Wires and Dots. Wiley, New York (2006)Google Scholar
  4. 4.
    Chakraborty, T.: Quantum Dots, A survey of the properties of artificial atoms (Institute of Mathematical Sciences,Taramani, Madras 600113, India)Google Scholar
  5. 5.
    Heitmann, D., Kotthaus, J.P.: Phys. Today 46(6), 56 (1993)CrossRefGoogle Scholar
  6. 6.
    Kastner, M.A.: Phys. Today 46(1), 24 (1993)ADSCrossRefGoogle Scholar
  7. 7.
    Hansen, W., Kotthaus, J.P., Merkt, U.: Semicond. Semimetals 32, 279 (1992)CrossRefGoogle Scholar
  8. 8.
    Reed, M.A. (ed.): Nanostructured Systems (Academic, San Diego) (1992)Google Scholar
  9. 9.
    Reed, M. A.: Sci. Am. 268, 98 (1993)ADSCrossRefGoogle Scholar
  10. 10.
    Thornton, T.J.: Pep. Prog. Phys. 58, 311 (1995)ADSCrossRefGoogle Scholar
  11. 11.
    Loss, D., DiVincenzo, D.P.: Phys. Rev. A 57, 120 (1998)ADSCrossRefGoogle Scholar
  12. 12.
    Benjamin, S., Johnson, N.F.: Appl. Phys. Lett. 70, 2321 (1997)ADSCrossRefGoogle Scholar
  13. 13.
    Lent, C.S., Tougaw, P.D.: J. Appl. Phys. 74, 6227 (1993)ADSCrossRefGoogle Scholar
  14. 14.
    Villas-Bas, J.M., Govorov, A.O., Ulloa, S.E.: Phys. Rev. B 125342, 69 (2004)Google Scholar
  15. 15.
    Breuer, H.P., Petruccione, F.: The theory of open quantum systems. Oxford University Press, Oxford (2002)MATHGoogle Scholar
  16. 16.
    Petroff, P.M., Lorke, A., Imamoglu, A.: Phys. Today 54(5), 46 (2001)ADSCrossRefGoogle Scholar
  17. 17.
    Lambropoulos, P., Petrosyan, D.: Fundamentals of quantum optics and quantum information. Springer (2007)Google Scholar
  18. 18.
    Gardiner, C.W., Zoller, P.: Quantum noise. Springer (2000)Google Scholar
  19. 19.
    Schieve, W.C., Mddelton, J.W.: Int. J. Quant. Chem. Quantum Chem. Symposisum 11, 625 (1977)Google Scholar
  20. 20.
    Walls, D.F., Milburn, G.J.: Quantum optics. Springer-Verlag (1994)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Physics, Faculty of ScienceUniversity of KurdistanSanandajIran

Personalised recommendations