International Journal of Theoretical Physics

, Volume 54, Issue 12, pp 4260–4271 | Cite as

Quantum Structures Versus Partially Ordered Groups



We present a survey of applications of partially ordered groups (= po-groups) in quantum structures. The survey has two levels: (1) To show when an effect algebra or a pseudo effect algebra is an interval in the positive cone of a po-group. A sufficient condition is a kind of the Riesz Decomposition Property, i.e. a property when two decompositions have a joint refinement. (2) Using an arbitrary power of the positive and negative cone of a po-group and two injections, we can construct a large class of pseudo effect algebras which are called kite pseudo effect algebras, and we describe basic properties of this class.


Effect algebra Pseudo effect algebra Pseudo MV-algebra -group Po-group Strong unit Riesz decomposition property Kite pseudo effect algebra Subdirectly irreducible kite 



The author is very indebted to an anonymous referee for his/her careful reading and suggestions which helped to improve the readability of the paper.


  1. 1.
    Birkhoff, G., von Neumann, J.: The logic of quantum mechanics. Ann. Math. 37, 823–843 (1936)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Burris, S., Sankappanavar, H.P.: A course in universal algebra, The Millennium Edition (2000)Google Scholar
  3. 3.
    Chang, C.C.: Algebraic analysis of many-valued logics. Trans. Amer. Math. Soc. 88, 467–490 (1958)MATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Darnel, M.R.: Theory of lattice-ordered groups. New York (1995)Google Scholar
  5. 5.
    Di Nola, A., Georgescu, G., Iorgulescu, A.: Pseudo-BL algebras I, Multiple Val. Logic 8, 673–714 (2002)MATHMathSciNetGoogle Scholar
  6. 6.
    Di Nola, A., Georgescu, G., Iorgulescu, A.: Pseudo-BL algebras II. Multiple Val. Logic 8, 715–750 (2002)Google Scholar
  7. 7.
    Dvurečenskij, A.: Pseudo MV-algebras are intervals in -groups. J. Austral. Math. Soc. 72, 427–445 (2002)MATHCrossRefGoogle Scholar
  8. 8.
    Dvurečenskij, A.: The lattice and simplex structure of states on pseudo effect algebras. Inter. J. Theor. Phys. 50, 2758–2775 (2011)MATHCrossRefGoogle Scholar
  9. 9.
    Dvurečenskij, A.: Kite pseudo effect algebras. Found. Phys. 43, 1314–1338 (2013). doi: 10.1007/s10701-013-9748-y MATHMathSciNetCrossRefADSGoogle Scholar
  10. 10.
    Dvurečenskij, A.: On a new construction of pseudo effect algebras. Soft. Comput. doi: 10.1007/s00500-014-1468-5
  11. 11.
    Dvurečenskij, A.: Representable effect algebras and observables. Inter. J. Theor. Phys. 53, 2855–2866 (2014). doi: 10.1007/s10773-014-2083-z MATHCrossRefGoogle Scholar
  12. 12.
    Dvurečenskij, A., Holland, W.C.: Some remarks on kite pseudo effect algebras. Inter. J. Theor. Phys. 53, 1685–1696 (2014). doi: 10.1007/s10773-013-1966-8 MATHCrossRefGoogle Scholar
  13. 13.
    Dvurečenskij, A., Giuntini, R., Kowalski, T.: On the structure of pseudo BL-algebras and pseudo hoops in quantum logics. Found. Phys. 40, 1519–1542 (2010). doi: 10.1007/s10701-009-9342-5 MATHMathSciNetCrossRefADSGoogle Scholar
  14. 14.
    Dvurečenskij, A., Kowalski, T.: Kites and pseudo BL-algebras. Algebra Univer. 71, 235–260 (2014). doi: 10.1007/s00012-014-0276-1 MATHCrossRefGoogle Scholar
  15. 15.
    Dvurečenskij, A., Pulmannová, S.: New trends in quantum structures. Kluwer Academic Publ. , Dordrecht. Ister Science, Bratislava, 2000, 541 + xvi ppGoogle Scholar
  16. 16.
    Dvurečenskij, A., Vetterlein, T.: Pseudoeffect algebras. I. Basic properties. Inter. J. Theor. Phys. 40, 685–701 (2001)MATHCrossRefGoogle Scholar
  17. 17.
    Dvurečenskij, A., Vetterlein, T.: Pseudoeffect algebras. II. Group representation. Inter. J. Theor. Phys. 40, 703–726 (2001)MATHCrossRefGoogle Scholar
  18. 18.
    Dvurečenskij, A., Vetterlein, T. In: Di Nola, A., Gerla, G. (eds.) : Generalized pseudo-effect algebras.In: Lectures on soft computing and fuzzy logic, pp 89–111. Physica-Verlag, Springer-Verlag Co., Berlin (2001)Google Scholar
  19. 19.
    Dvurečenskij, A., Vetterlein, T.: Non-commutative algebras and quantum structures. Inter. J. Theor. Phys. 43, 1599–1612 (2004)CrossRefGoogle Scholar
  20. 20.
    Foulis, D.J., Bennett, M.K.: Effect algebras and unsharp quantum logics. Found. Phys. 24, 1331–1352 (1994)MATHMathSciNetCrossRefADSGoogle Scholar
  21. 21.
    Foulis, D.J., Pulmannová, S.: Unitizing a generalized pseudo effect algebras, Order. doi: 10.1007/s11083-014-9325-9
  22. 22.
    Fuchs, L.: Partially ordered algebraic systems. Pergamon Press, Oxford-New York (1963)MATHGoogle Scholar
  23. 23.
    Georgescu, G., Iorgulescu, A.: Pseudo-MV algebras. Multi Valued Logic 6, 95–135 (2001)MATHMathSciNetGoogle Scholar
  24. 24.
    Goodearl, K.R.: Partially Ordered Abelian Groups with Interpolation, Math. Surveys and Monographs No. 20, Amer. Math. Soc., Providence, Rhode Island (1986)Google Scholar
  25. 25.
    Jipsen, P., Montagna, F.: On the structure of generalized BL-algebras. Algebra Univers. 55, 226–237 (2006)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Kolmogorov, A.N.: Grundbegriffe der Wahrscheinlichkeitsrechnung, Berlin (1933)Google Scholar
  27. 27.
    Kôpka, F., Chovanec, F.: D-posets. Math. Slovaca 44, 21–34 (1994)MATHMathSciNetGoogle Scholar
  28. 28.
    Pulmannová, S.: Compatibility and decomposition of effects. J. Math. Phys. 43, 2817–2830 (2002)MATHMathSciNetCrossRefADSGoogle Scholar
  29. 29.
    Rachůnek, J.: A non-commutative generalization of MV-algebras. Czechoslovak Math. J. 52, 255–273 (2002)MATHMathSciNetCrossRefGoogle Scholar
  30. 30.
    Ravindran, K.: On a structure theory of effect algebras, PhD thesis, Kansas State Univ., Manhattan, Kansas (1996)Google Scholar
  31. 31.
    Riečanová, Z.: Generalization of blocks for D-lattice and lattice ordered effect algebras. Inter. J. Theor. Phys. 39, 231–237 (2000)MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Mathematical InstituteSlovak Academy of SciencesBratislavaSlovakia
  2. 2.Department Algebra GeometryPalacký UniversityOlomoucCzech Republic

Personalised recommendations