Advertisement

International Journal of Theoretical Physics

, Volume 54, Issue 7, pp 2446–2452 | Cite as

From a Five Dimensional Warped Friedmann–Robertson–Walker Universe to the Weyl Integrable Spacetime

  • Marina-Aura Dariescu
  • Ciprian Dariescu
Article

Abstract

The present work intends to point out similarities between the theory developed on a (k = 0)−FRW brane embedded in a five dimensional bulk and significant results derived within the Weyl integrable geometry.

Keywords

FRW Universe 5D Branes Weyl connection 

Notes

Acknowledgments

The authors are deeply acknowledging the warm hospitality of the Gravitation and Cosmology Group from the Federal University of Paraiba. Special thanks go to Professor Carlos Romero for inspiring discussions on WIG

References

  1. 1.
    Smolin, L.: Nucl. Phys. B 160, 253 (1979)CrossRefADSMathSciNetGoogle Scholar
  2. 2.
    Drechsler, W.: Found. Phys. 29, 1327 (1999)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Ehlers, J., Pirani, F.A.E. , Schild, A.: The geometry of free fall and light propagation. In: Raifeartaigh, L.O. (ed.) General Relativity – Papers in Honour of J. L. Synge, pp 63–84. Clarendon Press, Oxford (1972)Google Scholar
  4. 4.
    Pais, A.: Subtle is the Lord. Oxford University Press (1983)Google Scholar
  5. 5.
    Romero, C., Fonseca-Neto, J.B., Pucheu, M.L.: Class. Quant. Grav. 29, 155015 (2012)CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    Canuto, V. et al.: Phys. Rev. D 16, 1643 (1977)CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    Dariescu, M.A., Dariescu, C.: Astroparticle Phys. 34, 116 (2010)CrossRefADSGoogle Scholar
  8. 8.
    Dariescu, M.A., Dariescu, C.: Astrophys. Space Sci. 344, 529 (2013)CrossRefADSMATHGoogle Scholar
  9. 9.
    Romero, C., Fonseca-Neto, J.B., Pucheu, M.L.: Found. Phys. 42, 224 (2012)CrossRefADSMATHMathSciNetGoogle Scholar
  10. 10.
    Almeida, T.S. et al.: Phys. Rev. D 89, 064047 (2014)CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables. In: Abramowitz, M., Stegun, I.A. (eds.) . 9th Ed. Dover Books on Mathematics, New York (1972)Google Scholar
  12. 12.
    Damour, T., Esposito-Farese, G.: Class. Quant. Grav. 9, 2093 (1992)CrossRefADSMATHMathSciNetGoogle Scholar
  13. 13.
    Miritzis, J.: Class. Quant. Grav. 21, 3043 (2004)CrossRefADSMATHMathSciNetGoogle Scholar
  14. 14.
    Konstantinov, M.Yu, Melnikov, V.N.: Int. J. Mod. Phys. D 4, 339 (1995)CrossRefADSGoogle Scholar
  15. 15.
    Poulis, F.P., Salim, J.M. arXiv:gr-qc/1305.6830 (2013)
  16. 16.
    Miritzis, J.: Can Weyl geometry explain acceleration? In 11th conference on recent developments in gravity. J. Phys. Conf. Ser. 8, 131 (2005)CrossRefADSGoogle Scholar
  17. 17.
    Barrow, J.D., Clifton, T.: Phys. Rev. D 73, 103520 (2006)CrossRefADSMathSciNetGoogle Scholar
  18. 18.
    E: Scholz. arXiv:astro-ph/0409635 (2004)

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Faculty of PhysicsAlexandru Ioan Cuza UniversityIaşiRomania

Personalised recommendations