Skip to main content
Log in

Atomic and Photonic Entanglement Generation in n Coupled Atom-Cavity Systems

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Based on two-photon Jaynes-Cummings Hamiltonian for the n coupled optical cavities each of them containing a single three level atom, the n-qubit and n-photonic state transfer between the corresponding atoms and cavities is investigated. In fact, we consider that the cavities are located at the nodes (vertices) of the complete network (graph) K n at which all of the nodes are connected, so that the cavities are interact with each other (via two photon exchange) completely. Then, quantum state transfer, photon transition between cavities and entanglement generations between n atoms are discussed. More clearly, by employing the consistency of number of photons and atomic excitations (the symmetry of Hamiltonian), the hamiltonian of the system is reduced from 3n dimensional space into 2n dimensional one. Moreover, by introducing suitable basis for the atom-cavity state space based on Fourier transform, the reduced Hamiltonian is block-diagonalized, with 2 dimensional blocks. Then, the initial state of the system is evolved under the corresponding Hamiltonian and the suitable times T at which the initially unentangled atoms, become maximally entangled, are determined in terms of the hopping strength ξ between cavities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bouwmeester, D. et al.: The Physics of Quantum Information. Springer, Berlin Heidelberg New York (2000)

    Book  MATH  Google Scholar 

  2. Christandl, M., Datta, N., Ekert, A., Landahl, A.J.: Phys. Rev. Lett. 92, 187902 (2004)

    Article  ADS  Google Scholar 

  3. Christandl, M., Datta, N., Dorlas, T.C., Ekert, A., Kay, A., Landahl, A.J.: Phys. Rev. A. 71, 032312 (2005)

    Article  ADS  Google Scholar 

  4. Facer, C., Twamley, J., Cresser, J.: Phys. Rev. A 77, 012334 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  5. Burgarth, D., Bose, S.: Phys. Rev. A 71, 052315 (2005)

    Article  ADS  Google Scholar 

  6. Burgarth, D., Bose, S.: New J. Phys. 7, 135 (2005)

    Article  ADS  Google Scholar 

  7. Yung, M.H., Bose, S.: Phys. Rev. A 71, 032310 (2005)

    Article  ADS  Google Scholar 

  8. Yung, M.H.: Phys. Rev. A 74, 030303 (2006)

    Article  ADS  Google Scholar 

  9. Jafarizadeh, M.A., Sufiani, R.: Phys. Rev. A 77, 022315 (2008)

    Article  ADS  Google Scholar 

  10. Jafarizadeh, M.A., et al.: J. Phys. A: Math. Theor. 41, 475302 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  11. Jafarizadeh, M.A., et al.: J. Stat. Mech., 05014 (2011)

  12. Turchette, Q.A., Hood, C.J., Lange, W., Mabuchi, H., Kimble, H.J.: Phys. Rev. Lett. 75, 4710 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  13. Brune, M., et al.: Phys. Rev. Lett. 77, 4887 (1996)

    Article  ADS  Google Scholar 

  14. Mattle, K., Weinfurter, H., Kwiat, P.G., Zeilinger, A.: Phys. Rev. Lett. 76, 4656 (1996)

    Article  ADS  Google Scholar 

  15. Biswas, A., Agarwal, G.S.: Phys. Rev. A 70, 022323 (2004)

    Article  ADS  Google Scholar 

  16. Cirac, J.I., Zoller, P., Kimble, H.J., Mabuchi, H.: Phys. Rev. Lett. 78, 3221 (1997)

    Article  ADS  Google Scholar 

  17. Alexanian, M., et al.: J. Mod. Opt. 45, 2519 (1998)

    Article  ADS  Google Scholar 

  18. Alexanian, M.: Phys. Rev. A 83, 023814 (2011)

    Article  ADS  Google Scholar 

  19. Alexanian, M.: arXiv:quant-ph:12034173 (2012)

  20. Dong, Y.-L., et al.: Phys. Rev. A 85, 023833 (2012)

    Article  ADS  Google Scholar 

  21. Hardal, A.Ü.C., Mstecaplioglu, Ö.E.: J. Opt. Soc. Am. B 29, 1822–1828 (2012)

    Article  ADS  Google Scholar 

  22. Sufiani, R.: Quantum state transfer in atom-cavity systems with uncolored Cayley interacting networks. Int. J. Theor. Phys. (2014). doi:10.1007/s10773-014-2213-7

  23. Puri, R.R.: Mathematical Methods of Quantum Optics. Springer, Berlin Heidelberg New York (2001)

    Book  MATH  Google Scholar 

  24. Scully, M.O., Zubairy, M.S.: Quantum Optics. Cambridge University Press, Cambridge, UK (1997)

    Book  Google Scholar 

  25. Hillery, M.: Acta physica slovaca. Rev. Tutor. 59, 1 (2009)

    Google Scholar 

  26. DellAnno, F., De Siena, S., Illuminati, F.: Phys. Rep. 428, 53 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  27. Buzek, V., Hladky, B.: J. Mod. Opt. 40, 1309 (1998)

    Article  ADS  Google Scholar 

  28. Peres, A.: Phys. Rev. Lett. 77, 1413–1415 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  29. Horodecki, M. et al.: Phys. Lett. A 223, 1–8 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  30. Wootters, W.K.: Phys. Rev. Lett. 80, 2245–2248 (1998)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Sufiani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sufiani, R., Darkhosh, A. Atomic and Photonic Entanglement Generation in n Coupled Atom-Cavity Systems. Int J Theor Phys 54, 2299–2311 (2015). https://doi.org/10.1007/s10773-014-2452-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-014-2452-7

Keywords

Navigation