Advertisement

International Journal of Theoretical Physics

, Volume 54, Issue 6, pp 2001–2011 | Cite as

Partition a Quantum Pure-state Set into Unambiguously Discriminable Subsets

  • Jianting Wang
  • Jianyu Wang
  • Zhongqian Fu
Article

Abstract

The problem of partitioning a quantum pure-state set into unambiguously discriminable subsets is investigated in this paper. We prove that the problem is decomposable into sub-problems of two-subset partitioning. A recursive algebro-geometric method based on Generalized Principal Component Analysis(GPCA) is proposed. When multiple feasible partitions exist, our method is able to return all of them by introducing Brill’s equations. Through this method, the efficiency of a kind of collective photon-number-splitting(PNS) attack is discussed.

Keywords

Unambiguous set discrimination Subspace clustering Collective attack Generalized principal component analysis 

Notes

Acknowledgments

We would thank Prof. René Vidal and Prof. Song Lin for their insightful advices and discussions.

References

  1. 1.
    Barnett, S.M., Chefles, A., Jex, I.: Comparison of two unknown pure quantum states. Phys. Lett. A 307(4), 189–195 (2003)CrossRefADSMATHMathSciNetGoogle Scholar
  2. 2.
    Bergou, J.A., Feldman, E., Hillery, M.: Optimal unambiguous discrimination of two subspaces as a case in mixed-state discrimination. Phys. Rev. A 73(3) (2006)Google Scholar
  3. 3.
    Bergou, J.A., Futschik, U., Feldman, E.: Optimal Unambiguous Discrimination of Pure Quantum States. Phys. Rev. Lett. 108(25), 250,502 (2012)CrossRefGoogle Scholar
  4. 4.
    Bergou, J.A., Herzog, U., Hillery, M.: Quantum filtering and discrimination between sets of Boolean functions. Phys. Rev. Lett. 90, 257,901 (2003)CrossRefGoogle Scholar
  5. 5.
    Chefles, A.: Unambiguous discrimination between linearly independent quantum states. Phys. Lett. A 239(6), 339–347 (1998)CrossRefADSMATHMathSciNetGoogle Scholar
  6. 6.
    Chefles, A., Barnett, S.M.: Strategies for discriminating between non-orthogonal quantum states. J. Mod. Opt. 45(6), 1295–1302 (1998)CrossRefADSMATHMathSciNetGoogle Scholar
  7. 7.
    Courtois, N., Klimov, A., Patarin, J., Shamir, A.: Efficient algorithms for solving overdefined systems of multivariate polynomial equations (2000)Google Scholar
  8. 8.
    Croke, S., Andersson, E., Barnett, S.M., Gilson, C.R., Jeffers, J.: Maximum confidence quantum measurements. Phys. Rev. Lett. 96(7), 070,401 (2006)CrossRefGoogle Scholar
  9. 9.
    Derksen, H.: Hilbert series of subspace arrangements. J. Pure Appl. Algebra 209(1), 91–98 (2007)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Dieks, D.: Overlap and distinguishability of quantum states. Phys. Lett. A 126(5), 303–306 (1988)CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    Eldar, Y.C.: A semidefinite programming approach to optimal unambiguous discrimination of quantum states. IEEE Trans. On Inf. Theory 49(2), 446–456 (2003)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Guelfand, I., Kapranov, M., Zelevinsky, A.: Discriminants, Resultants and Multidimensional Determinants. Birkhäuser Boston (1994)Google Scholar
  13. 13.
    Helstrom, C.W., et al.: Quantum detection and estimation theory, vol. 84. Academic press New York, New York (1976)Google Scholar
  14. 14.
    Holevo, A.S.: Statistical decision theory for quantum systems. J. Multivar. Anal. 3(4), 337–394 (1973)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Hwang, W.Y., Koh, I.G., Han, Y.D.: Quantum cryptography without public announcement of bases. Phys. Lett. A 9601 (1998)Google Scholar
  16. 16.
    Ivanovic, I.D.: How to differentiate between non-orthogonal states. Phys. Lett. A 123(6), 257–259 (1987)CrossRefADSMathSciNetGoogle Scholar
  17. 17.
    Lin, S., Liu, X.F.: A modified quantum key distribution without public announcement bases against photon-number-splitting attack . Int. J. Theor. Phys. 51(8), 2514–2523 (2012)CrossRefMATHGoogle Scholar
  18. 18.
    Lin, S., Wen, Q.Y., Gao, F., Zhu, F.C.: Eavesdropping on secure deterministic communication with qubits through photon-number-splitting attacks. Phys. Rev. A 79(5), 054,303 (2009)CrossRefGoogle Scholar
  19. 19.
    Peres, A.: How to differentiate between non-orthogonal states. Phys. Lett. A 128(1), 19 (1988)CrossRefADSMathSciNetGoogle Scholar
  20. 20.
    Rudolph, T., Spekkens, R., Turner, P.: Unambiguous discrimination of mixed states. Phys. Rev. A 68(1) (2003)Google Scholar
  21. 21.
    Stegers, T., Buchmann, J.: Faugere’s f5 algorithm revisited. IACR Cryptology ePrint Archive 2006, 404 (2006)Google Scholar
  22. 22.
    Sun, Y.Q., Bergou, J.A., Hillery, M., Bergou, A.: Optimum unambiguous discrimination between subsets of nonorthogonal quantum states. Phys. Rev. A 66(3), 1–11 (2002)CrossRefGoogle Scholar
  23. 23.
    Vidal, R.: Subspace Clustering. IEEE Signal Proc. Mag. 28(2), 52–68 (2011)CrossRefGoogle Scholar
  24. 24.
    Vidal, R., Ma, Y., Sastry, S.: Generalized principal component analysis (GPCA). In: Proceedings. 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003, vol. 1, pp I–621. IEEE (2003)Google Scholar
  25. 25.
    Vidal, R., Ma, Y., Sastry, S.: Generalized principal component analysis (gpca). IEEE Trans. Pattern Anal. Mach. Intell. 27(12), 1945–1959 (2005)CrossRefGoogle Scholar
  26. 26.
    Yang, A., Rao, S., Wagner, A.: Hilbert functions and applications to the estimation of subspace arrangements. In: Tenth IEEE International Conference on Computer Vision, 2005. ICCV 2005, vol. 1, pp 158–165. IEEE (2005)Google Scholar
  27. 27.
    Yuen, H., Kennedy, R., Lax, M.: Optimum testing of multiple hypotheses in quantum detection theory. IEEE Trans. Inf. Theory 21(2), 125–134 (1975)CrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    Zhang, C., Feng, Y.A., Ying, M.S.: Unambiguous discrimination of mixed quantum states. Phys. Lett. A 353(4), 300–306 (2006)CrossRefADSGoogle Scholar
  29. 29.
    Zhang, C.W., Li, C.F., Guo, G.C.: General strategies for discrimination of quantum states. Phys. Lett. A 261(1), 25–29 (1999)CrossRefADSMATHMathSciNetGoogle Scholar
  30. 30.
    Zhang, S., Feng, Y., Sun, X., Ying, M.: Upper bound for the success probability of unambiguous discrimination among quantum states. Phys. Rev. A 64(6), 062,103 (2001)CrossRefGoogle Scholar
  31. 31.
    Zhang, S., Ying, M.: Set discrimination of quantum states. Phys. Rev. A 65, 1–5 (2002)MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Shanghai Institute of Technical PhysicsChinese Academy of SciencesShanghaiChina
  2. 2.Department of Electronic Science and TechnologyUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations