Advertisement

International Journal of Theoretical Physics

, Volume 54, Issue 5, pp 1461–1469 | Cite as

Nonmaximally Entangled States can be Better for Quantum Correlation Distribution and Storage

  • Xin-Wen Wang
  • Shi-Qing Tang
  • Ji-Bing Yuan
  • Le-Man Kuang
Article

Abstract

For carrying out many quantum information protocols entanglement must be established in advance between two distant parties. Practically, inevitable interaction of entangled subsystems with their environments during distribution and storage will result in degradation of entanglement. Here we show that some partially entangled states are more robust than maximally entangled states in terms of the residual quantum correlation measured by concurrence, fully entangled fraction, and quantum discord, respectively. This phenomenon leads to the fact that nonmaximally entangled states can outperform maximally entangled states for quantum correlation distribution and storage under the amplitude damping. These results can also educe a noticeable consequence that the ordering of states under quantum correlation monotones can be reversed even by local trace-preserving and completely positive maps.

Keywords

Quantum correlation Decoherence Concurrence Fully entangled fraction Quantum discord 

Notes

Acknowledgements

This work was supported by the NSFC (No. 11004050 and No. 11375060), the China Postdoctoral Science Foundation funded project (No. 2013T60769), and the Hunan Provincial Applied Basic Research Base of Optoelectronic Information Technology (No. GDXX007).

References

  1. 1.
    Pan, J.W., Chen, Z.B., Lu, C.Y., Weinfurter, H., Zeilinger, A., Żukowski, M.: Rev. Mod. Phys. 84, 777–838 (2012)CrossRefADSGoogle Scholar
  2. 2.
    Kraus, B., Cirac, J. I.: Phys. Rev. Lett. 92, 013602 (2004)CrossRefADSGoogle Scholar
  3. 3.
    Paternostro, M., Son, W., Kim, M.S.: Phys. Rev. Lett. 92, 197901 (2004)CrossRefADSGoogle Scholar
  4. 4.
    Guo, Y.: Int. J. Theor. Phys. 51, 2954–2959 (2012)CrossRefMATHGoogle Scholar
  5. 5.
    Slodička, L., Hétet, G., Röck, N., Schindler, P., Hennrich, M., Blatt, R.: Phys. Rev. Lett. 110, 083603 (2013)CrossRefADSGoogle Scholar
  6. 6.
    Cirac, J.I., Zoller, P., Kimble, H.J., Mabuchi, H.: Phys. Rev. Lett. 78, 3221–3224 (1997)CrossRefADSGoogle Scholar
  7. 7.
    Qiu, T.H., Yang, G.J.: Int. J. Theor. Phys. 52, 2530–2536 (2013)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Sangouard, N., Simon, C, de Riedmatten, H., Gisin, N. Rev. Mod. Phys. 83, 33–80 (2011)CrossRefADSGoogle Scholar
  9. 9.
    Duan, L.M., Monroe, C.: Rev. Mod. Phys. 82, 1209–1224 (2010)CrossRefADSGoogle Scholar
  10. 10.
    Bellomo, B., Lo Franco, R., Compagno, G.: Phys. Rev. A 77, 032342 (2008)CrossRefADSGoogle Scholar
  11. 11.
    Maziero, J., Céleri, L.C., Serra, R.M., Vedral, V.: Phys. Rev. A 80, 044102 (2009)CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    Fanchini, F.F., Werlang, T., Brasil, C.A., Arruda, L.G.E., Caldeira, A.O.: Phys. Rev. A 81, 052107 (2010)CrossRefADSGoogle Scholar
  13. 13.
    Wang, B., Xu, Z.Y., Chen, Z.Q., Feng, M.: Phys. Rev. A 81, 014101 (2010)CrossRefADSGoogle Scholar
  14. 14.
    Li, J.G., Zou, J., Shao, B.: Phys. Rev. A 82, 042318 (2010)CrossRefADSGoogle Scholar
  15. 15.
    Huang, P., Zhu, J., Qi, X.X., He, G.Q., Zeng, G.H.: Quantum Inf. Process 11, 1845–1865 (2012)CrossRefADSMATHMathSciNetGoogle Scholar
  16. 16.
    Zhang, J.: Quantum Inf. Process 12, 1627–1636 (2013)CrossRefADSMATHMathSciNetGoogle Scholar
  17. 17.
    Shang, C.J., Chen, T., Liu, J.B., et al. Int. J. Theor. Phys. 49, 717–727 (2010)CrossRefGoogle Scholar
  18. 18.
    Ji, Y.H., Wang, Z.S., Hu, J.J.: Int. J. Theor. Phys. 50, 644–653 (2011)CrossRefMATHGoogle Scholar
  19. 19.
    Konrad, T., De Melo, F., Tiersch, M., et al.: Nature Phys. 4, 99–102 (2008)CrossRefADSGoogle Scholar
  20. 20.
    Xu, J.S., Li, C.F., Xu, X.Y., et al.: Phys. Rev. Lett. 103, 240502 (2009)CrossRefADSGoogle Scholar
  21. 21.
    Tiersch, M., de Melo, F., Konrad, T., Buchleitner, A.: Quantum Inf. Process. 8, 523–534 (2009)CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)MATHGoogle Scholar
  23. 23.
    Wootters, W.K.: Phys. Rev. Lett. 80, 2245 (1998)CrossRefADSGoogle Scholar
  24. 24.
    Horodecki, M., Horodecki, P., Horodecki, R.: Phys. Rev. A 60, 1888–1898 (1999)CrossRefADSMATHMathSciNetGoogle Scholar
  25. 25.
    Ollivier, H., Zurek, W.H.: Phys. Rev. Lett. 88, 017901 (2001)CrossRefADSGoogle Scholar
  26. 26.
    Henderson, L., Vedral, V.: J. Phys. A 34, 6899–6905 (2001)CrossRefADSMATHMathSciNetGoogle Scholar
  27. 27.
    Bennett, C.H., Brassard, G., Popescu, S., et al. Phys. Rev. Lett. 76, 722 (1996)CrossRefADSGoogle Scholar
  28. 28.
    Bandyopadhyay, S., Ghosh, A.: Phys. Rev. A 86 (R), 020304 (2012)CrossRefADSGoogle Scholar
  29. 29.
    Lo Franco, R., Bellomo, B., Maniscalco, S., Compagno, G.: Int. J. Mod. Phys. B 27, 1345053 (2013)CrossRefADSMathSciNetGoogle Scholar
  30. 30.
    Modi, K., Brodutch, A., Cable, H., Paterek, T., Vedral, V.: Rev. Mod. Phys. 84, 1655–1707 (2012)CrossRefADSGoogle Scholar
  31. 31.
    Dakić, B., Lipp, Y.O., Ma, X., et al.: Nature Phys. 8, 666–670 (2012)CrossRefADSGoogle Scholar
  32. 32.
    Brodutch, A.: Phys. Rev. A 88, 022307 (2013)CrossRefADSGoogle Scholar
  33. 33.
    Brodutch, A., Terno, D.R. Phys. Rev. A 83 (R), 010301 (2011)CrossRefADSGoogle Scholar
  34. 34.
    Yin, J., Ren, J.G., Lu, H., et al.: Nature 488, 185 (2012)CrossRefADSGoogle Scholar
  35. 35.
    Yu, T., Eberly, J.H.: Phys. Rev. Lett. 93, 140404 (2004)CrossRefADSGoogle Scholar
  36. 36.
    Bellomo, B., Lo Franco, R., Compagno, G.: Phys. Rev. Lett. 99, 160502 (2007)CrossRefADSGoogle Scholar
  37. 37.
    Almeida, M.P, de Melo, F., Hor-Meyll, M., et al.: Science 316, 579–582 (2007)CrossRefADSGoogle Scholar
  38. 38.
    Lo Franco, R., DArrigo, A., Falci, G., Compagno, G., Paladino, E.: Phys. Scr. T147, 014019 (2012)CrossRefADSGoogle Scholar
  39. 39.
    Badziag, P., Horodecki, M., Horodecki, P., Horodecki, R.: Phys. Rev. A 62, 012311 (2000)CrossRefADSGoogle Scholar
  40. 40.
    Bandyopadhyay, S.: Phys. Rev. A 65, 022302 (2002)CrossRefADSGoogle Scholar
  41. 41.
    Verstraete, F., Verschelde, H.: Phys. Rev. Lett. 90, 097901 (2003)CrossRefADSGoogle Scholar
  42. 42.
    Verstraete, F., Verschelde, H.: Phys. Rev. A 66, 022307 (2002)CrossRefADSMathSciNetGoogle Scholar
  43. 43.
    Vidal, G., Werner, R.F.: Phys. Rev. A 65, 032314 (2002)CrossRefADSGoogle Scholar
  44. 44.
    Luo, S.: Phys. Rev. A 77, 042303 (2008)CrossRefADSGoogle Scholar
  45. 45.
    Ali, M., Rau, A.R.P., Alber, G.: Phys. Rev. A 81, 042105 (2010)CrossRefADSGoogle Scholar
  46. 46.
    Chen, Q., Zhang, C., Yu, S., Yi, X.X., Oh, C.H.: Phys. Rev. A 84, 042313 (2011)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Xin-Wen Wang
    • 1
    • 2
  • Shi-Qing Tang
    • 1
  • Ji-Bing Yuan
    • 1
  • Le-Man Kuang
    • 1
  1. 1.Department of Physics and Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of EducationHunan Normal UniversityChangshaPeople’s Republic of China
  2. 2.Department of Physics and Electronic Information ScienceHengyang Normal UniversityHengyangPeople’s Republic of China

Personalised recommendations