International Journal of Theoretical Physics

, Volume 54, Issue 4, pp 1342–1351 | Cite as

Cumulant Expansion for a System with Pre- and Post-Selection and a Weak Value of a Gaussian System

  • Masashi Ban


The generalized cumulant expansion is a suitable method for investigating a quantum system with pre- and post-selection. When pre- and post-selected states of a system to be measured and an initial state of a measurement device are Gaussian with respect to relevant observables, weak values can be obtained from measurement outcomes without any other restrictions such as weakness of a system-device coupling and large uncertainty of a pointer observable in the initial state since all the cumulants higher than the second order vanish. A Gaussian weak value is investigated for a single mode optical system prepared in a coherent-squeezed state, where the post-selection is done by a homodyne detection.


Weak value Quantum measurement Cumulant expansion Gaussian state 


  1. 1.
    Peres, A.: Quantum Theory: Concepts and Methods. Kluwer, Dordrecht (1993)MATHGoogle Scholar
  2. 2.
    Von Neumann, J.: The Mathematical Foundations of Quantum Mechanics. Springer, Berlin (1932)Google Scholar
  3. 3.
    Aharonov, Y., Albert, D.Z., Vaidman, L.: Phys. Rev. Lett. 60, 1351 (1988)CrossRefADSGoogle Scholar
  4. 4.
    Duck, I.M., Stevenson, P.M., Sudarshan, E.C.G.: Phys. Rev. D 40, 2112 (1989)CrossRefADSGoogle Scholar
  5. 5.
    Aharonov, Y., Vaidman, L.: Phys. Rev. A 41, 11 (1990)CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    Wiseman, H.M.: Phys. Rev. A 65, 032111 (2002)CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    Johansen, L.M.: Phys. Rev. Lett. 93, 120402 (2004)CrossRefADSGoogle Scholar
  8. 8.
    Johansen, L.M., Luis, A.: Phys. Rev. A 70, 052115 (2004)CrossRefADSGoogle Scholar
  9. 9.
    Johansen, L.M.: Phys. Lett. A 322, 298 (2004)CrossRefADSMATHMathSciNetGoogle Scholar
  10. 10.
    Jozsa, R.: Phys. Rev. A 76, 044103 (2007)CrossRefADSGoogle Scholar
  11. 11.
    Wu, S., Li, Y.: Phys. Rev. A 83, 052106 (2011)CrossRefADSGoogle Scholar
  12. 12.
    Lobo, A.C., Ribeiro, C.A.: Phys. Rev. A 80, 012112 (2009)CrossRefADSMathSciNetGoogle Scholar
  13. 13.
    Geszti, T.: Phys. Rev. A 81, 044102 (2010)CrossRefADSGoogle Scholar
  14. 14.
    Zhu, X., Zhang, Y., Pang, S., Qiao, C., Liu, Q., Wu, S.: Phys. Rev. A 84, 052111 (2011)CrossRefADSGoogle Scholar
  15. 15.
    Di Lorenzo, A.: Phys. Rev. A 85, 032106 (2012)CrossRefADSGoogle Scholar
  16. 16.
    Nakamura, K., Nishizawa, A., Fujimoto, M.: Phys. Rev. A 85, 012113 (2011)CrossRefADSGoogle Scholar
  17. 17.
    Kofman, A.G., Ashhab, S., Nori, F.: Phys. Re. 520, 43 (2012)CrossRefADSMathSciNetGoogle Scholar
  18. 18.
    Kubo, R.: J. Phys. Soc. Jpn 17, 1100 (1962)CrossRefADSMATHMathSciNetGoogle Scholar
  19. 19.
    Kubo, R.: J. Math. Phys. 4, 2270 (1963)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Barnett, S.M., Radmore, P.M.: Methods in Theoretical Optics. Oxford University Press, Oxford (1997)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Graduate School of Humanities and SciencesOchanomizu UniversityBunkyo-kuJapan

Personalised recommendations