International Journal of Theoretical Physics

, Volume 53, Issue 12, pp 4121–4131 | Cite as

Mathematical Feature of Gauge Theory



In this paper, we deal with root of gauge theory and constrained system. Considering unlike second class constrained leads to non-gauge theory, all theories with first class constraints are gauge theory. We consider two mathematical and systematic methods, BFT approach and Gauge Unfixing formalism which do conversion of non-gauge theory into gauge one. Despite of noble similarities of two methods, they have primordial different which mentioned. In the end, we figure out these methods for two impressive models which are interesting in their own


Gauge theories Constrained systems Second class constraints First class constraints BFT approach Gauge unfixing formalism 


  1. 1.
    Dirac, P.A.M.: Lecture on quantom mechanics, Belfer graduate school. Yashiva University Press, New York (1964)Google Scholar
  2. 2.
    Rothe, H.J., Rothe, K.D.: Classical and quantum dynamics of Hamiltonian constraint systems 81, 321 (2010)MathSciNetGoogle Scholar
  3. 3.
    Wipf, A.W.: Hamiltonian Formalism for Systems with Constraints, Bad Honnef, (1993)Google Scholar
  4. 4.
    Batalin, I.A., Fradkin, E.S.: Nucl. Phys. B 279, 514 (1987)MathSciNetCrossRefADSGoogle Scholar
  5. 5.
    Batalin, I.A., Tyutin, I.V.: Int. J. Mod. Phys. A 11, 1353 (1996)MathSciNetCrossRefMATHADSGoogle Scholar
  6. 6.
    Monemzadeh, M., Ebrahimi, Aghileh S.: Int. J. Mod. Phys. A 27(1), 250081 (2012)MathSciNetGoogle Scholar
  7. 7.
    Monemzadeh, M., Taki, M.: Int. J. Mod. Phys. A 26, 1035 (2011)MathSciNetCrossRefMATHADSGoogle Scholar
  8. 8.
    Ebrahimi, A.S., Monemzadeh, M.: Int. J. Chem. Model. 4, 13 (2012)Google Scholar
  9. 9.
    Loran, F., Shirzad, A.: Int. J. Mod. Phys. A 17, 625 (2002)MathSciNetCrossRefMATHADSGoogle Scholar
  10. 10.
    Shirzad, A., Monemzadeh, M.: Phys. Lett. B 584(220) (2004)Google Scholar
  11. 11.
    Monemzadeh, M., Ebrahimi, A.S., Sarmad, S., Dehghani, M.: J. Mod. Phys. Lett. A 29(5), 1450028 (2014)CrossRefADSGoogle Scholar
  12. 12.
    Mitra, P., Rajaraman, R.: Ann. Phys. (N.Y.) 203, 157 (1990)MathSciNetCrossRefMATHADSGoogle Scholar
  13. 13.
    Vytheeswaran, A.S.: Ann. Phys. (N.Y.) 206, 297 (1994)MathSciNetCrossRefADSGoogle Scholar
  14. 14.
    Ananias Neto, J. Braz. J.: Phys. 36, 237 (2006)CrossRefADSGoogle Scholar
  15. 15.
    Ananias Neto, J.: Braz. J. Phys. 37, 1106 (2007)CrossRefADSGoogle Scholar
  16. 16.
    Obukhov, Y.N.: Rev. Phys. D 68, 21 (2003)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Izaurieta, F., Minning, P., Prez, A., Rodriguez, E., Salgado, P.: Phys. Lett. B 678, 213 (2009)MathSciNetCrossRefADSGoogle Scholar
  18. 18.
    Bonora, L., Cvitan, M., Prester, P.D., Pallua, S., Smoli, I.: Class. Quantum Grav. 28, 195009 (2011)CrossRefADSGoogle Scholar
  19. 19.
    Meusburger, C., Schroers, B.J.: Class. Quantum Grav. 22, 44 (2005)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of KashanKashanIran

Personalised recommendations