Advertisement

International Journal of Theoretical Physics

, Volume 53, Issue 11, pp 3958–3969 | Cite as

A Class of Super Dense Stars Models Using Charged Analogues of Hajj-Boutros Type Relativistic Fluid Solutions

  • Neeraj Pant
  • N. Pradhan
  • Mohammad Hassan Murad
Article

Abstract

We present a spherically symmetric solution of the general relativistic field equations in isotropic coordinates for perfect charged fluid, compatible with a super dense star modeling. The solution is well behaved for all the values of Schwarzschild parameter u lying in the range 0 < u < 0.1727 for the maximum value of charge parameter K = 0.08163. The maximum mass of the fluid distribution is calculated by using stellar surface density as ρ b = 4.6888×1014g cm−3. Corresponding to K = 0.08 and u max = 0.1732, the resulting well behaved solution has a maximum mass M = 0.9324M and radius R = 8.00 and by assuming ρ b = 2×1014g cm−3 the solution results a stellar configuration with maximum mass M = 1.43M and radius R b = 12.25 km. The maximum mass is found increasing with increasing K up to 0.08. The well behaved class of relativistic stellar models obtained in this work might has astrophysical significance in the study of internal structure of compact star such as neutron star or self-bound strange quark star like Her X-1.

Keywords

General relativity Relativistic astrophysics Exact solution Reissner-Nordström Isotropic coordinates Perfect fluid sphere Charged fluid sphere Compact stars Relativistic stars Equation of state 

Notes

Acknowledgments

The first two authors are grateful to Major Gen. Ashok Ambre, SM, the Deputy Commandant, NDA, India, for his motivation. And the third author is greatly indebted to his wife Saba Fatema, Department of Natural Sciences, Daffodil International University, Dhaka, Bangladesh, for her inspiration, continuous support and help in the preparation of LATEX source files of the manuscript.

Authors also express their sincere gratitude to the esteemed reviewer(s) for rigorous review, constructive comments and useful suggestions.

References

  1. 1.
    Ivanov, B.V.: Phys. Rev. D 65(104001) (2002). doi: 10.1103/PhysRevD.65.104001 Google Scholar
  2. 2.
    Bonnor, W.B.: Mon. Not. R. Astron. Soc. 137, 239 (1965)CrossRefADSGoogle Scholar
  3. 3.
    Delgaty, M.S.R., Lake, K.: Comput. Phys. Commun. 115(395) (1998). doi: 10.1016/S0010-4655(98)00130-1 MathSciNetMATHGoogle Scholar
  4. 4.
    Stephani, H., Kramer, D., Maccallum, M., Hoenselaers, C., Helrt, E., 2nd edition Exact Solutions of Einstein’s Field Equations. Cambridge Monographs on Mathematical Physics. Cambridge (2003)Google Scholar
  5. 5.
    Oppenheimer, J.R., Volkoff, G.M.: Phys. Rev. 55(374) (1939). doi: 10.1103/PhysRev.55.374 Google Scholar
  6. 6.
    Tolman, R.C.: Phys. Rev. 55(364) (1939). doi: 10.1103/PhysRev.55.364 Google Scholar
  7. 7.
    Buchdahl, H.A.: Astrophys. J. 147(310) (1967). doi: 10.1086/149001 Google Scholar
  8. 8.
    Wyman, M.: Phys. Rev. 75(1930) (1949). doi: 10.1103/PhysRev.75.1930 MathSciNetMATHGoogle Scholar
  9. 9.
    Buchdahl, H.A.: Astrophys. J. 140(1512) (1964). doi: 10.1086/148055 MathSciNetMATHGoogle Scholar
  10. 10.
    Mehra, A.L.: J. Aust. Math. Soc. 6(153) (1966). doi: 10.1017/S1446788700004730 Google Scholar
  11. 11.
    Leibovitz, C.: Phys. Rev. D 185(1664) (1969). doi: 10.1103/PhysRev.185.1664 MathSciNetGoogle Scholar
  12. 12.
    Heintzmann, H.: Z. Phys. 228(489) (1969). doi: 10.1007/BF01558346 MathSciNetGoogle Scholar
  13. 13.
    Adler, R.J.: J. Math. Phys. 15(727) (1974). doi: 10.1063/1.1666717 Google Scholar
  14. 14.
    Adams, R.C., Cohen, J.M.: Astrophys. J. 198(507) (1975). doi: 10.1086/153627 Google Scholar
  15. 15.
    Kuchowicz, B.: Astrophys. Space Sci. 33(L13) (1975). doi: 10.1007/BF00646028 MATHGoogle Scholar
  16. 16.
    Vaidya, P.C., Tikekar, R.J.: Astrophys. Astron. 3(325) (1982). doi: 10.1007/BF00755998 Google Scholar
  17. 17.
    Durgapal, M.C.: J. Phys. A, Math. Gen. 15(2637) (1982). doi: 10.1088/0305-4470/15/8/039 Google Scholar
  18. 18.
    Durgapal, M.C., Bannerji, R.: Phys. Rev. D 27(328) (1983). doi: 10.1103/PhysRevD.27.328 Google Scholar
  19. 19.
    Durgapal, M.C., Fuloria, R.S. Gen. Relativ. Gravit. 17(671) (1985). doi: 10.1007/BF00763028 MathSciNetGoogle Scholar
  20. 20.
    Tikekar, R.: J. Math. Phys. 31(2454) (1990). doi: 10.1063/1.528851 MathSciNetMATHGoogle Scholar
  21. 21.
    Pant, D.N., Pant, N.: J. Math. Phys. 34(2440) (1993). doi: 10.1063/1.530129 MathSciNetGoogle Scholar
  22. 22.
    Pant, D.N.: Astrophys. Space Sci. 215(37) (1994). doi: 10.1007/BF00627463 MathSciNetGoogle Scholar
  23. 23.
    Pant, N.: Astrophys. Space Sci. 240(187) (1996). doi: 10.1007/BF00639583 Google Scholar
  24. 24.
    Tikekar, R., Jotania, K.: Int. J. Mod. Phys. D 14(1037) (2005). doi: 10.1142/S021827180500722X MATHGoogle Scholar
  25. 25.
    Tikekar, R., Thomas, V.O. Pramana J. Phys. 50(95) (1998)Google Scholar
  26. 26.
    Sharma et al: Int. J. Mod. Phys. D 15(405) (2006). doi: 10.1142/S0218271806008012
  27. 27.
    Jotania, K., Tikekar, R.: Int. J. Mod. Phys. D 15(1175) (2006). doi: 10.1142/S021827180600884X Google Scholar
  28. 28.
    Takisa, P.M., Maharaj, S.D.: Gen. Relativ. Gravit. 45(1951) (2013). doi: 10.1007/s10714-013-1570-5 MathSciNetGoogle Scholar
  29. 29.
    Nariai, H.: Sci. Rep. Tohoku University, Ser. 1 XXXIV, 160 (1950). Republished in. Gen. Rel. Gravit. 31(951) (1999). doi: 10.1023/A:1026698508110 Google Scholar
  30. 30.
    Goldman, S.P.: Astrophys. J. 226(1079) (1978). doi: 10.1086/156684 Google Scholar
  31. 31.
    Knutsen, H.: Gen. Relativ. Gravit. 23(843) (1991). doi: 10.1007/BF00755998 MathSciNetGoogle Scholar
  32. 32.
    Kuchowicz, B.: Phys. Lett. A 35(223) (1971). doi: 10.1016/0375-9601(71)90350-1 MATHGoogle Scholar
  33. 33.
    Kuchowicz, B.: Acta Phys. Pol. B 2(657) (1971). doi: 10.1016/0375-9601(71)90350-1 MATHGoogle Scholar
  34. 34.
    Kuchowicz, B.: Phys. Lett. A 38(369) (1972). doi: 10.1016/0375-9601(72)90164-8 Google Scholar
  35. 35.
    Kuchowicz, B. Acta Phys. Pol. B 3, 209 (1972)ADSGoogle Scholar
  36. 36.
    Kuchowicz, B. Acta Phys. Pol. B 4, 415 (1973)Google Scholar
  37. 37.
    Hajj-Boutros, J.: J. Math. Phys. 27(1363) (1986). doi: 10.1063/1.527091 Google Scholar
  38. 38.
    Rahman, S., Visser, M.: Class. Quantum Gravity 19(935) (2002). doi: 10.1088/0264-9381/19/5/307 MathSciNetGoogle Scholar
  39. 39.
    Lake, K.: Phys. Rev. D 67(104015) (2003). doi: 10.1103/PhysRevD.67.104015 MATHGoogle Scholar
  40. 40.
    Mak, M.K., Harko, T.: Pramana J. Phys. 65(185) (2005). doi: 10.1007/BF02898610 Google Scholar
  41. 41.
    John, A.J., Maharaj, S.D.: Nuovo Cimento B 121(27) (2006). doi: 10.1393/ncb/i2005-10179-y Google Scholar
  42. 42.
    Pant, N., Mehta, R.N., Pant, M.J.: Astrophys. Space Sci. 330(353) (2010). doi: 10.1007/s10509-010-0383-1 Google Scholar
  43. 43.
    Pant, N., Fuloria, P., Pradhan, N.: Int. J. Theor. Phys. 53(993) (2014). doi: 10.1007/s10773-013-1892-9 Google Scholar
  44. 44.
    Pant, N., Fuloria, P., Tewari, B.C.: Astrophys. Space Sci. 340(407) (2012). doi: 10.1007/s10509-012-1068-8 Google Scholar
  45. 45.
    Pant, N, Pradhan, N: Astrophys. Space Sci. 352(143) (2014). doi: 10.1007/s10509-014-1905-z Google Scholar
  46. 46.
    Das, B., et al: Int. J. Mod. Phys. D 20(1675) (2011). doi: 10.1142/S0218271811019724 Google Scholar
  47. 47.
    Ivanov, B.V.: Gen. Relativ. Gravit. 44(1835) (2012). doi: 10.1007/s10714-012-1370-3 Google Scholar
  48. 48.
    Murad, H.M., Pant, N.: Astrophys. Space Sci. 350(349) (2014). doi: 10.1007/s10509-013-1713-x Google Scholar
  49. 49.
    Canuto, V., Lodenquai, J.: Phys. Rev. C 12(2033) (1975). doi: 10.1103/PhysRevC.12.2033 Google Scholar
  50. 50.
    Brecher, K., Caporaso, G. Nature 259(377) (1976). doi: 10.1038/259377a0 Google Scholar
  51. 51.
    Zdunik, J.L.: Astron. Astrophys. 359, 311 (2000)ADSGoogle Scholar
  52. 52.
    Fatema, S., Murad, M.H.: Int. J. Theor. Phys. 52(2508) (2013). doi: 10.1007/s10773-013-1538-y MathSciNetGoogle Scholar
  53. 53.
    Bonnor, W.B., Vickers, P.A.: Gen. Relativ. Gravit. 13(29) (1981). doi: 10.1007/BF00766295 Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Neeraj Pant
    • 1
  • N. Pradhan
    • 2
  • Mohammad Hassan Murad
    • 3
  1. 1.Department of MathematicsNational Defence AcademyPuneIndia
  2. 2.Department of PhysicsNational Defence AcademyPuneIndia
  3. 3.Department of Mathematics and Natural SciencesBRAC UniversityDhakaBangladesh

Personalised recommendations