International Journal of Theoretical Physics

, Volume 53, Issue 11, pp 3910–3926 | Cite as

Open and Closed World Models in Kaluza-Klein-Theory with Variables G and Λ



The field equation of higher dimensions theory, have been applied in the area of cosmology. The resulting differential equations are solved for open and closed. We derive a relation between the Einstein constant G(t) and the cosmological constant Λ(t) from the conservation law T μ ν ;ν =0. We give a specific form of Λ(t) to solve the non-linear differential equations. Some cosmological parameters are calculated and some relevant cosmological problems are discussed.


Higher dimensions theory Cosmology Gravitational and cosmological constants 



This work is partially supported by the EgyptianMinistry of Scientific Research under project ID 24-2-12.


  1. 1.
    Perlmutter, S., et al.: Nature 391, 51 (1998)CrossRefADSGoogle Scholar
  2. 2.
    Perlmutter, S., et al.: Astrophys. J. 517, 565 (1999)CrossRefADSGoogle Scholar
  3. 3.
    Reiess, A.G., et al.: Astron. J. 116, 1009 (1998)CrossRefADSGoogle Scholar
  4. 4.
    Reiess, A.G., et al.: Astron. J. 607, 665 (2004)CrossRefGoogle Scholar
  5. 5.
    Sahni, V.: The Cosmological constant problem and quintessence. Class. Quantum Grav. 19, 3435–3448 (2002)CrossRefMATHADSMathSciNetGoogle Scholar
  6. 6.
    Lahav, O., Liddle, A. R.: Review of particle physics. Particle data group. Phys. Lett. B 592, 1–5 (2004)ADSGoogle Scholar
  7. 7.
    Kamenshchik, A. Y., Moschella, U., Pasquier, V.: An alternative to quintessence. Phys. Lett. B 511, 265–268 (2001)CrossRefADSGoogle Scholar
  8. 8.
    Zhu, Z.-H., Fujimoto, M.-K.: Constraints on Cardassian expansion from distant type Ia supernovae. Astrophys. J. 585, 52–56 (2003)CrossRefADSGoogle Scholar
  9. 9.
    Sen, S., Sen, A.: Observational constraints on Cardassian expansion. Astrophys. J. 588, 1–6 (2003)CrossRefADSGoogle Scholar
  10. 10.
    Godlowski, W., Szydlowski, M., Krawiec, A.: Constraints on a Cardassian model from SNIa data - revisited. Astrophys. J. 605, 599–606 (2004)CrossRefADSGoogle Scholar
  11. 11.
    Godlowski, W., Szydlowski, M., Krawiee, A.: Brane universes tested by Supernovae Ia . Gen. Relativ. Gravit. 36, 767–797 (2004)CrossRefMATHADSGoogle Scholar
  12. 12.
    Godlowski, W., Stelmach, J., Szydlowski, M.: Can the Stephani model be an alternative to FRW accelerating models? Class. Quantum Grav. 21, 3953–3973 (2004)CrossRefMATHADSGoogle Scholar
  13. 13.
    Puetzfeld, D., Chen, X.: Testing non-standard cosmological models with supernovae. Class. Quantum Grav. 21, 2703–2723 (2004)CrossRefMATHADSMathSciNetGoogle Scholar
  14. 14.
    Biesiada, M., Godlowski, W., Szydlowski, M.: Generalized chaplygin gas models tested with type Ia supernovae. Astrophys. J. 622, 28–39 (2005)CrossRefADSGoogle Scholar
  15. 15.
    Caldwell, R. R.: Spintessence! New models for dark matter and dark energy. Phys. Lett. B 545, 17–22 (2002)ADSGoogle Scholar
  16. 16.
    Carroll, S. M., Hofman, M., Trodden, M.: Can the dark energy equation-of-state parameter w be less than -1? Phys. Rev. D 68, 023509–0235020 (2003)ADSGoogle Scholar
  17. 17.
    Hsu, S. D. H., Jenkins, A., Wise, M. B.: Gradient instability for. Phys. Lett. B 597, 270–274 (2004)CrossRefADSGoogle Scholar
  18. 18.
    Overdwin, J. M., Wesson, P. S.: Phys. Rep. 283, 303–387 (1997)CrossRefADSMathSciNetGoogle Scholar
  19. 19.
    Maartans, R.: Living Reviews in Relativity /lrr 2004-7Google Scholar
  20. 20.
    Pradhan, A., Khadekar, G. S., Patki, V., Otarod, S.: Int. J. Theor. Phys. 47, 1751–1763 (2008)CrossRefGoogle Scholar
  21. 21.
    Kaluza, T., Unitätsproblem, Z.: On the problem of unity in physics. der Physik, Sitz. Preuss. Akad. Wiss. Phys. Math. K1, 966–972 (1921)Google Scholar
  22. 22.
    Klein, O.: Quantum theory and five-dimensional theory of relativity. Quantentheorie und fünfdimensionale Relativitätstheorie, Zeits. Phys. 37, 895–906 (1926)CrossRefMATHGoogle Scholar
  23. 23.
    Bergmann, P. G.: Comments on the scalar-tensor theory. Int. J. Theor. Phys. 1, 25–36 (1968)CrossRefGoogle Scholar
  24. 24.
    Wagoner, R. V.: Scalar-tensor theory and gravitational waves. Phys. Rev. D1, 3209–3216 (1970)ADSGoogle Scholar
  25. 25.
    Linde, A. D.: Is the Lee constant a cosmological constant?. JETP Lett. 19, 183–185 (1974)ADSMathSciNetGoogle Scholar
  26. 26.
    Endo̅, M., Fukui, T.: The cosmological term and a modified Brans-Dicke cosmology. Gen. Rel. Grav. 8, 833–839 (1977)CrossRefADSGoogle Scholar
  27. 27.
    Canuto, V., Hsieh, S. H., Adams, P. J.: Scale-covariant theory of gravitation and astrophysical applications. Phys. Rev. Lett. 39, 429–432 (1977)CrossRefMATHADSGoogle Scholar
  28. 28.
    Kazanas, D.: Dynamics of the universe and spontaneous symmetry breaking. Astrophys. J. Lett. 241, L59–L63 (1980)CrossRefADSGoogle Scholar
  29. 29.
    Polyakov, A. M.: Phase transitions and the universe. Sov. Phys. Usp. 25, 187 (1982). [Usp. Fiz. Nauk 136 (1982) 538]CrossRefADSGoogle Scholar
  30. 30.
    Adler, S. L.: Einstein gravity as a symmetry-breaking effect in quantum field theory. Rev. Mod. Phys. 54, 729–766 (1982)CrossRefADSGoogle Scholar
  31. 31.
    Dolgov, A. D.: The Very Early Universe, p. 449. In: Gibbons, G.W., Hawking, S.W., Siklos, S.T.C. (eds.) Cambridge University Press (1983)Google Scholar
  32. 32.
    Abbott, L. F.: A mechanism for reducing the value of the cosmological constant. Phys. Lett. B150, 427–430 (1985)CrossRefADSMathSciNetGoogle Scholar
  33. 33.
    Banks, T.: T C P, Quantum gravity, the cosmological constant and all that...Nucl. Phys. B249, 332–360 (1985)CrossRefADSGoogle Scholar
  34. 34.
    Peccei, R. D., Solà, J., Wetterich, C.: Adjusting the cosmological constant dynamically: Cosmons and a new force weaker than gravity. Phys. Lett. B195, 183–190 (1987)CrossRefADSGoogle Scholar
  35. 35.
    Barr, S. M.: An attempt at a classical cancellation of the cosmological constant. Phys. Rev. D36, 1691–1715 (1987)ADSMathSciNetGoogle Scholar
  36. 36.
    Peebles, P. J. E., Ratra, B.: Cosmology with a time variable cosmological constant. Astrophys. J. Lett. 325, L17–L30 (1988)CrossRefADSGoogle Scholar
  37. 37.
    Fujii, Y., Nishioka, T.: Reconciling a small density parameter to inflation. Phys. Lett. B254, 347–354 (1991)CrossRefADSGoogle Scholar
  38. 38.
    Frieman, J. A., Hill, C. T., Stebbins, A., Waga, I.: Fermilab, Cosmology with ultralight pseudo Nambu-Goldstone bosons. Phys. Rev. Lett. 75, 2077–2080 (1995)CrossRefADSGoogle Scholar
  39. 39.
    Moffat, J. W.: How old is the universe? Phys. Lett. B357, 526–531 (1995)CrossRefADSMathSciNetGoogle Scholar
  40. 40.
    Hawking, S.W.: The cosmological constant is probably zero. Phys. Lett. B134, 403–404 (1984)CrossRefADSMathSciNetGoogle Scholar
  41. 41.
    Banks, T.: Relaxation Of The cosmological constant. Phys. Rev. Lett. 52, 1461–1463 (1984)CrossRefADSGoogle Scholar
  42. 42.
    Brown, J. D., Teitelboim, C.: Dynamical neutralization of the cosmological constant. Phys. Lett. B195, 177–182 (1987)CrossRefADSGoogle Scholar
  43. 43.
    Dolgov, A. D.: Higher spin fields and the problem of cosmological constant. Phys. Rev. D55, 5881–5885 (1997)ADSGoogle Scholar
  44. 44.
    Dolgov, A. D.: 4th Colloque Cosmologie, Paris, June, 1997, astro-ph/9708045 (1997)Google Scholar
  45. 45.
    Linde, A. D.: Universe multiplication and the cosmological constant problem. Phys. Lett. B200, 272–274 (1988)CrossRefADSGoogle Scholar
  46. 46.
    Banks, T.: Prolegomena to a theory of bifurcating universes: a nonlocal solution to the cosmological constant problem or little lambda goes back to the future. Nucl. Phys. B309, 493–517 (1988)CrossRefADSGoogle Scholar
  47. 47.
    Coleman, S.: Why there is nothing rather than something: a theory of the cosmological constant. Nucl. Phys. B310, 643–677 (1988)CrossRefADSGoogle Scholar
  48. 48.
    Tsamis, N. C., Woodard, R. P.: Strong infrared effects in quantum gravity. Ann. Phys. (NY) 238, 1–82 (1995)CrossRefADSMathSciNetGoogle Scholar
  49. 49.
    Brandenberger, R. H., Zhitnitsky, A. R.: Can asymptotic series resolve the problems of inflation? Phys. Rev. D55, 4640–4646 (1997)ADSGoogle Scholar
  50. 50.
    Abramo, L. R. W., Brandenberger, R. H., Mukhanov, V. F.: The energy - momentum tensor for cosmological perturbations. Phys. Rev. D56, 3248–3257 (1997)ADSGoogle Scholar
  51. 51.
    Weinberg, S.: The cosmological constant problem. Rev. Mod. Phys. 61, 1–23 (1989)CrossRefMATHADSMathSciNetGoogle Scholar
  52. 52.
    Sharif, M.: Kaluza-Klein cosmology with varying G and ?. Astrophys. Space Sci. 334, 209–214 (2011)CrossRefMATHADSGoogle Scholar
  53. 53.
    Sharif, M.: Kaluza-Klein cosmology with modified holographic dark energy. Gen. Relat. Grav. 43, 2885–2894 (2011)CrossRefMATHADSMathSciNetGoogle Scholar
  54. 54.
    Sahni, V., Saini, T. D., Starobinsky, A. A., Alam, U.: Statefinder: a new geometrical diagnostic of dark energy. JETP Lett. 77, 201–206 (2003)CrossRefADSGoogle Scholar
  55. 55.
    Wanas, M.I., Nashed, G.G.L., Nowaya, A.A.: Cosmological applications in Kaluza-Klein theory. Chin. Phys. B 21, 049801 (2012)CrossRefADSGoogle Scholar
  56. 56.
    Lu, J.-A., Huang, C.-G.: Class. Quantum Gravi. 30, 145004 (2013)CrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Center for Theoretical PhysicsBritish University in EgyptSherouk CityEgypt
  2. 2.Mathematics Department, Faculty of ScienceAin Shams UniversityCairoEgypt
  3. 3.Egyptian Relativity Group (ERG)

Personalised recommendations