Advertisement

International Journal of Theoretical Physics

, Volume 53, Issue 11, pp 3744–3755 | Cite as

On the Geometry of the Dirac Matter with the Fermionic Potentials and its Quantum Properties

  • Luca Fabbri
Article

Abstract

We consider the torsional completion of gravity with electrodynamics for Dirac matter fields; we will see that these Dirac matter field equations will develop torsionally-induced non-linear interactions, which can be manipulated in order to be rearranged in the form of self-fermion potentials of a specific structure: we will see that this structure is formally equivalent to the one arising from quantum properties.

Keywords

Torsion effects Quantum anomalies 

References

  1. 1.
    Hehl, F.W., Von Der Heyde, P., Kerlick, G.D., Nester, J.M.: Rev. Mod. Phys. 48, 393 (1976)MathSciNetCrossRefADSGoogle Scholar
  2. 2.
    Hayashi, K.: Phys. Lett. B 65, 437 (1976)MathSciNetCrossRefADSGoogle Scholar
  3. 3.
    Yu, X.: Astrophys. Space Sci. 154, 321 (1989)MathSciNetCrossRefADSGoogle Scholar
  4. 4.
    Audretsch, J., Lämmerzahl, C.: Class. Quant. Gravit. 5, 1285 (1988)CrossRefMATHADSGoogle Scholar
  5. 5.
    Macias, A., La¨mmerzahl, C.: J. Math. Phys. 34, 4540 (1993)MathSciNetCrossRefMATHADSGoogle Scholar
  6. 6.
    Fabbri, L.: On a completely antisymmetric Cartan torsion tensor. In: Dvoeglazov (ed.) Annales de la Fondation de Broglie: Special Issue on Torsion. Fondation de Broglie (2007)Google Scholar
  7. 7.
    Fabbri, L.: On the principle of equivalence. In: Dvoeglazov (ed.) Contemporary Fundamental Physics: Einstein and Hilbert. Nova Science (2011)Google Scholar
  8. 8.
    Hammond, R.T.: Rept. Prog. Phys. 65, 599 (2002)MathSciNetCrossRefADSGoogle Scholar
  9. 9.
    Fabbri, L.: Ann. Fond. Broglie 33, 365 (2008)MathSciNetGoogle Scholar
  10. 10.
    Fabbri, L.: Int. J. Theor. Phys. 51, 954 (2012)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Fabbri, L.: Mod. Phys. Lett. A 27, 1250028 (2012)MathSciNetCrossRefADSGoogle Scholar
  12. 12.
    Baekler, P., Hehl, F.W.: Class. Quant. Grav. 28, 215017 (2011)MathSciNetCrossRefADSGoogle Scholar
  13. 13.
    Fabbri, L.: Gen. Relativ. Gravit. 45, 1285 (2013)MathSciNetCrossRefMATHADSGoogle Scholar
  14. 14.
    Fabbri, L. Int. J. Theor. Phys. http://link.springer.com/article/10.1007/s10773-013-1992-6 (2014)
  15. 15.
    Inomata, A.: Phys. Rev. D 18, 3552 (1978)MathSciNetCrossRefADSGoogle Scholar
  16. 16.
    Israel, W.: Phys. Rev. D 2, 641 (1970)MathSciNetCrossRefMATHADSGoogle Scholar
  17. 17.
    Lopez, C.A.: Phys. Rev. D 30, 313 (1984)CrossRefADSGoogle Scholar
  18. 18.
    Audretsch, J.: Phys. Rev. D 24, 1470 (1981)MathSciNetCrossRefADSGoogle Scholar
  19. 19.
    Nambu, Y., Jona–Lasinio, G.: Phys. Rev. 122, 345 (1961)CrossRefADSGoogle Scholar
  20. 20.
    Peskin, M. E., Schroeder, D.V.: Quantum Field Theory. Perseus Books (1995)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.INFN, Sez. di Bologna and Dipartimento di FisicaUniversità di BolognaBolognaItaly

Personalised recommendations