Advertisement

International Journal of Theoretical Physics

, Volume 53, Issue 9, pp 3208–3218 | Cite as

New Characterizations for Minimizing Energy of Biharmonic Particles in Heisenberg Spacetime

  • Talat Körpinar
Article

Abstract

In this work, we study energy of timelike biharmonic particle in a new spacetime Heisenberg spacetime \(\mathcal {H}_{1}^{4}\). We give a geometrical description of energy of a Frenet vector fields of timelike biharmonic particle in \(\mathcal {H}_{1}^{4}.\) Moreover, we obtain different cases for this particles.

Keywords

Energy Heisenberg spacetime Biharmonic particle Bienergy 

Notes

Acknowledgments

The authors would like to express their sincere gratitude to the referees for the valuable suggestions to improve the paper.

References

  1. 1.
    Altın, A.: On the energy and pseudoangle of Frenet vector fields in R\(_{v}^{n}\). Ukr. Math. J. 63(6), 969–976 (2011)CrossRefMATHGoogle Scholar
  2. 2.
    Asil, V.: Velocities of dual homothetic exponential motions in D 3. Iran. J. Sci. Tecnol. Trans. A: Sci. 31(4), 265–271 (2007)MathSciNetGoogle Scholar
  3. 3.
    Capovilla, R., Chryssomalakos, C., Guven, J.: Hamiltonians for curves. J. Phys. A: Math. Gen. 35, 6571–6587 (2002)ADSCrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Carmeli, M.: Motion of a charge in a gravitational field. Phys. Rev. B 138, 1003–1007 (1965)ADSCrossRefMathSciNetGoogle Scholar
  5. 5.
    Chacon, P.M., Naveira, A.M.: Corrected energy of distributions on Riemannian manifold. Osaka J. Math. 41, 97–105 (2004)MATHMathSciNetGoogle Scholar
  6. 6.
    Gray, A.: Modern Differential Geometry of Curves and Surfaces with Mathematica. CRC Press, Boca Raton (1998)MATHGoogle Scholar
  7. 7.
    Eells, J., Lemaire, L.: A report on harmonic maps. Bull. Lond. Math. Soc. 10, 1–68 (1978)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Einstein, A.: Relativity: The Special and General Theory. Henry Holt, New York (1920)Google Scholar
  9. 9.
    Hehl, F.W., Obhukov, Y.: Foundations of Classical Electrodynamics. Basel, Birkhauser (2003)CrossRefMATHGoogle Scholar
  10. 10.
    Hofer, M., Pottmann, H.: Energy-minimizing splines in manifolds. Trans. Graph. 23(3), 284–293 (2004)CrossRefGoogle Scholar
  11. 11.
    Jiang, G.Y.: 2-harmonic maps and their first and second variational formulas. Chin. Ann. Math. Ser. A 7(4), 389–402 (1986)MATHGoogle Scholar
  12. 12.
    Körpınar, T., Turhan, E., Time-canal surfaces around biharmonic particles and its lorentz transformations in Heisenberg spacetime. Int. J. Theor. Phys. (2013). doi: 10.1007/s10773-013-1950-3
  13. 13.
    Körpınar, T., Turhan, E.: On characterization of B-canal surfaces in terms of biharmonic B-slant helices according to Bishop frame in Heisenberg group Heis3. J. Math. Anal. Appl. 382, 57–65 (2012)CrossRefGoogle Scholar
  14. 14.
    Körpınar, T., Turhan, E., Asil, V.: Tangent Bishop spherical images of a biharmonic B-slant helix in the Heisenberg group Heis3. Iran. J. Sci. Technol. Trans. A: Sci. 35, 265–271 (2012)Google Scholar
  15. 15.
    Körpınar, T., Turhan, E.: Tubular surfaces around timelike biharmonic curves in Lorentzian Heisenberg Group Heis3. An. St. Univ. Ovidius Constanta, Ser. Mat. 20(1), 431–445 (2012)MATHGoogle Scholar
  16. 16.
    Körpınar, T., Turhan, E.: Time-tangent surfaces around biharmonic particles and its Lorentz transformations in Heisenberg spacetime. Int. J. Theor. Phys. 52, 4427–4438 (2013)CrossRefMATHGoogle Scholar
  17. 17.
    Körpınar, T., Turhan, E.: A new version of time-pencil surfaces around Biharmonic particles and its Lorentz transformations in Heisenberg spacetime. Int. J. Theor. Phys. (2014). doi: 10.1007/s10773-014-2029-5
  18. 18.
    O’Neill, B.: Semi-Riemannian Geometry. Academic Press, New York (1983)MATHGoogle Scholar
  19. 19.
    Pina, E.: Lorentz transformation and the motion of a charge in a constant electromagnetic field. Rev. Mex. Fis. 16, 233–236 (1967)Google Scholar
  20. 20.
    Ringermacher, H.: Intrinsic geometry of curves and the Minkowski force. Phys. Lett. A 74, 381–383 (1979)ADSCrossRefMathSciNetGoogle Scholar
  21. 21.
    Synge, J.L.: Relativity: The General Theory. North Holland, Amsterdam (1960)MATHGoogle Scholar
  22. 22.
    Synge, J.L.: Time-like helices in flat spacetime. Proc. R. Ir. Acad., Sect. A 65, 27–41 (1967)MATHMathSciNetGoogle Scholar
  23. 23.
    Trocheris, M.G.: Electrodynamics in a rotating frame of reference. Philo. Mag. 7, 1143–1155 (1949)MathSciNetGoogle Scholar
  24. 24.
    Turhan, E., Körpınar, T.: On characterization of timelike horizontal Biharmonic curves in the Lorentzian Heisenberg group Heis3. Z. Naturforsch. A- A J. Phys. Sci. 65a, 641–648 (2010)Google Scholar
  25. 25.
    Turhan, E., Körpınar, T.: Position vector of spacelike biharmonic curves in the Lorentzian Heisenberg group Heis3. Analele Stiintifice ale Universitatii Ovidius Constanta, Seria Matematica 19, 285–296 (2011)MATHGoogle Scholar
  26. 26.
    Turhan, E., Körpınar, T.: On characterization canal surfaces around timelike horizontal Biharmonic curves in Lorentzian Heisenberg Group Heis3. Z. Naturforsch. A- A J. Phys. Sci. 66a, 441–449 (2011)CrossRefGoogle Scholar
  27. 27.
    Weber, J.: Relativity and Gravitation. Interscience, New York (1961)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of MathematicsMuş Alparslan UniversityMuşTurkey

Personalised recommendations