International Journal of Theoretical Physics

, Volume 53, Issue 9, pp 2923–2930 | Cite as

Concrete Representation and Separability Criteria for Symmetric Quantum State

  • Chang’e Li
  • Yuanhong Tao
  • Jun Zhang
  • Linsong Li
  • Hua Nan


Using the typical generators of the special unitary groups S U(2), the concrete representation of symmetric quantum state is established, then the relations satisfied by those coefficients in the representation are presented. Based on the representation of density matrix, the PPT criterion and CCNR criterion are proved to be equivalent on judging the separability of symmetric quantum states. Moreover, it is showed that the matrix Γ ρ of symmetric quantum state only has five efficient entries, thus the calculation of ∥Γ ρ ∥ is simplified. Finally, the quantitative expressions of real symmetric quantum state under the ∥Γ ρ ∥ separability criterion are obtained.


Symmetric quantum state Density matrix Separability criterion 


  1. 1.
    Peres, A.: Seperability criterion for density matrices. Phys. Rev. Lett. 77, 1413 (1996)ADSCrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 865, 81 (2009)MathSciNetGoogle Scholar
  3. 3.
    Rudolph, O.: Further results on the cross norm criterion for separability. e-print quant-ph/0202121
  4. 4.
    Chen, K., Wu, L.A.: A matrix realignment method for recogniaing entanglement. Quantum Inf. Comput. 3(3), 193–202 (2003)MATHMathSciNetGoogle Scholar
  5. 5.
    Chen, K., Wu, L.A.: Phys. Lett. A 306(1), 14–20 (2002)ADSCrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Chen, K., Wu, L.A.: Detection of entanglement and Bell’s inequality violation. arXiv:quant-ph/0306137v1, 20 Jun 2003
  7. 7.
    Horodecki, P.: Lectures on Quantum Information. Wiley-VCH, Berlin (2006)Google Scholar
  8. 8.
    Rudolph, O.: Some properties of the computable cross norm criterion for separability. Phys. Rev. A 032312, 67 (2003)Google Scholar
  9. 9.
    Horodecki, M., Horodecki, P., Horodecki, R.: Separability of mixed quantum states: linear contractions approach. e-print, quant-ph/0206008
  10. 10.
    Tao, Y.H., Ding, W.W., Li, C.E.: Criteria for separability of multipartite quantum system. Int. J. Theor. Phys. 52, 1970–1978 (2013)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Tóth, G., Gühne, O.: Entanglement and permutational symmetry. Phys. Rev. Lett. 102, 170503 (2009)ADSCrossRefMathSciNetGoogle Scholar
  12. 12.
    Tóth, G., Gühne, O.: Separability criteria and entanglement witnesses for symmetric quantum states. Appl. Phys. B 98(4), 617–622 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    Chen, K., Albeverio, S., Fei, S.M.: Concurrence of arbitrary dimensional bipartite quantum states. Phys. Rev. Lett. (2005). APSGoogle Scholar
  14. 14.
    Terhal, B.M., Vollbrecht, K.G.H.: Entanglement of formation for isotropic states. Phys. Rev. Lett. 85, 2625 (2000)ADSCrossRefGoogle Scholar
  15. 15.
    Vollbrecht, K.G.H., Werner, R.F.: Entanglement measures under symmetry. Phys. Rev. A 64, 062307 (2001)ADSCrossRefGoogle Scholar
  16. 16.
    Eggeling, T., Werner, R.F.: Separability properties of tripartite states with UUU symmetry. Phys. Rev. A 63, 042111 (2001)ADSCrossRefMathSciNetGoogle Scholar
  17. 17.
    Tóth, G., Gühne, O.: Entanglement and permutational symmetry. Phys. Rev. Lett. 102, 170503 (2009)ADSCrossRefMathSciNetGoogle Scholar
  18. 18.
    Liu, Y.X., Gao, T.: The study of some separability criteria. Doctoral Dissertation. Hebei Normal University (2010)Google Scholar
  19. 19.
    Hübener, R., Kleinmann, M., Wei, T.C., González-Guillén, C., Gühne, O.: Entanglement and permutational symmetry. Phys. Rev. A 80, 032324 (2009)ADSCrossRefMathSciNetGoogle Scholar
  20. 20.
    Thew, R.T., Nemoto, K., White, A.G.: Qudit quantum-state tomography. Phys. Rev. A 66(1), 1–6 (2002)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Chang’e Li
    • 1
  • Yuanhong Tao
    • 1
  • Jun Zhang
    • 1
  • Linsong Li
    • 1
  • Hua Nan
    • 1
  1. 1.Department of MathematicsYanbian UniversityJiLinPeople’s Republic of China

Personalised recommendations