Advertisement

International Journal of Theoretical Physics

, Volume 53, Issue 8, pp 2697–2707 | Cite as

Bidirectional Quantum Controlled Teleportation via a Maximally Seven-qubit Entangled State

  • Ya-Jun Duan
  • Xin-Wei Zha
  • Xin-Mei Sun
  • Jia-Fan Xia
Article

Abstract

A bidirectional quantum controlled teleportation scheme using a seven-qubit maximally entangled state as quantum channel is proposed. This means that Alice can transmit an arbitrary single qubit state of qubit a to Bob and Bob can transmit an arbitrary single qubit state of qubit b to Alice via the control of the supervisor Charlie.

Keywords

Bidirectional quantum controlled teleportation Seven-qubit maximally entangled state von Neumann measurement 

Notes

Acknowledgements

This work is supported by Shaanxi Natural Science Foundation under Contract No.2013JM1009 and the Innovation Fund of graduate school of Xi’an University of Posts and Telecommunications under Contract No.ZL 2013-33.

References

  1. 1.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2002)Google Scholar
  2. 2.
    Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)ADSCrossRefMathSciNetMATHGoogle Scholar
  3. 3.
    Gorbachev, V.N., Trubilko, A.I., Rodichkina, A.A.: Can the states of the W-class be suitable for teleportation? Phys. Lett. A 314, 267–271 (2003)ADSCrossRefMathSciNetMATHGoogle Scholar
  4. 4.
    Zhang, Z.J., Zhong, X.M.: Many-agent controlled teleportation of multi-qubit quantum information. Phys. Lett. A 341, 55–59 (2005)ADSCrossRefMATHGoogle Scholar
  5. 5.
    Yuan, H.C., Qi, K.G.: Probabilistic and controlled teleportation of tripartite state in a general form and its quantum networks. Chin. Phys. B 14, 1716–1723 (2005)CrossRefGoogle Scholar
  6. 6.
    Deng, F.G., Li, C.Y., Li, Y.S.: Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement. Phys. Rev. A 72, 022338 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    Cao, M., Zhu, S.: Probabilistic teleportation of n-particle state via n pairs of entangled particles. Commun. Theor. Phys. 43, 69–72 (2005)ADSCrossRefMathSciNetGoogle Scholar
  8. 8.
    Yeo, Y., Chua, W.K.: Teleportation and dense coding with genuine multipartite entanglement. Phys. Rev. Lett. 96, 060502 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    Zhang, Z.J.: Controlled teleportation of an arbitrary n-qubit quantum information using quantum secret sharing of classical message. Phys. Lett. A 352, 55–58 (2006)ADSCrossRefMATHGoogle Scholar
  10. 10.
    Li, X.H., Deng, F.G., Zhou, H.Y.: Controlled Teleportation of an arbitrary multi-qudit state in a general form with d-Dimensional Greenberger-Horne-Zeilinger states. Chin. Phys. Lett. 24, 1151–1153 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    Zha, X.W., Song, H.Y.: Non-Bell-pair quantum channel for teleporting an arbitrary two-qubit state. Phys. Lett. A 369, 377–379 (2007)ADSCrossRefMathSciNetMATHGoogle Scholar
  12. 12.
    Zhou, P., Li, X.H., Deng, F.G., Zhou, H.Y.: Multiparty-controlled teleportation of an arbitrary m-qudit state with a pure entangled quantum channel. J. Phys. A: Math. Theor. 40, 13121 (2007)ADSCrossRefMathSciNetMATHGoogle Scholar
  13. 13.
    Jiang, W.X., Fang, J.X., Zhu, S.J., Sha, J.Q.: Probabilistic Controlled Teleportation of a TripletW State. Chin. Phys. Lett. 24, 1144–1146 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    Zhan, X.G., Li, H.M., Ji, H., Zeng, H.S.: Controlled teleportation of multi-qudit quantum information. Chin. Phys. B 16, 2880–2884 (2007)CrossRefGoogle Scholar
  15. 15.
    Man, Z.X., Xia, J.J., An, N.B.: Economical and feasible controlled teleportation of an arbitrary unknown n-qubit entangled state. J. Phys. B: At. Mol. Opt. Phys. 40, 1767–1774 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    Jiang, W.X., Fang, J.X., Zhu, S.J., Sha, J.Q.: Controlled teleportation of an unknown n-qubit entangled GHZ state. Commun. Theor. Phys. 47, 1045–1048 (2007)ADSCrossRefMathSciNetGoogle Scholar
  17. 17.
    Muralidharan, S., Panigrahi, P.K.: Quantum-information splitting using multipartite cluster states. Phys. Rev. A 78, 062333 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    Gao, T., Yan, F.L., Li, Y.C.: Optimal controlled teleportation. Europhys. Lett. 84, 50001 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    Dong, J., Teng, J.F.: Controlled teleportation of an arbitrary n-qudit state using nonmaximally entangled GHZ states. Eur. Phys. J. D 49, 129–134 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    Nie, Y.Y., Hong, Z.H., Huang, Y.B., Yi, X.J., Li, S.S.: Non-maximally entangled controlled teleportation using four particles cluster states. Int. J. Theor. Phys. 48, 1485–1490 (2009)CrossRefMathSciNetMATHGoogle Scholar
  21. 21.
    Choudhury, S., Muralidharan, S., Panigrahi, P.K.J.: Quantum teleportation and state sharing using a genuinely entangled six-qubit state. J. Phys. A. Math. Theor. 42, 115303 (2009)ADSCrossRefMathSciNetGoogle Scholar
  22. 22.
    Chen, X.B., Xu, G., Yang, Y.X., Wen, Q.Y.: Centrally controlled quantum teleportation. Opt. Commun. 283, 4802–4809 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    Hou, K., Liu, G.H., Zhang, X.Y., Sheng, S.Q.: An efficient scheme for five-party quantum state sharing of an arbitrary m-qubit state using multiqubit cluster states. Quantum Inf. Process 10, 463–473 (2011)CrossRefMathSciNetMATHGoogle Scholar
  24. 24.
    Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, M., Zeilinger, A.: Experimental quantum teleportation. Nature 390, 575–579 (1997)ADSCrossRefGoogle Scholar
  25. 25.
    Ursin, R., Jennewein, T., Aspelmeyer, M., Kaltenbaek, R., Lindenthal, M., Walther, P., Zeilinger, A.: Communications: Quantum teleportation across the danube. Nature (London) 430, 849 (2004)ADSCrossRefGoogle Scholar
  26. 26.
    Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret. Phys. Rev. Lett. 83, 648–651 (1999)ADSCrossRefGoogle Scholar
  27. 27.
    Lance, A.M., Symul, T., Bowen, W.P., Sanders, B.C., Lam, P.K.: Tripartite Quantum State Sharing. Phys. Rev. Lett. 92, 177903 (2004)ADSCrossRefGoogle Scholar
  28. 28.
    Deng, F.G., Li, X.H., Li, C.Y., Zhou, P., Zhou, H.Y.: Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein-Podolsky-Rosen pairs. Phys. Rev. A 72, 044301 (2005)ADSCrossRefGoogle Scholar
  29. 29.
    Li, X.H., Zhou, P., Li, C.Y., Zhou, H.Y., Deng, F.G.: Efficient symmetric multiparty quantum state sharing of an arbitrary m-qubit state. J. Phys. B: At. Mol. Opt. Phys. 39, 1975 (2006)ADSCrossRefGoogle Scholar
  30. 30.
    Deng, F.G., Li, X.H., Li, C.Y., Zhou, P., Zhou, H.Y.: Multiparty quantum secret splitting and quantum state sharing. Phys. Lett. A 354, 190–195 (2006)ADSCrossRefMathSciNetMATHGoogle Scholar
  31. 31.
    Deng, F.G., Li, X.H., Li, C.Y., Zhou, P., Zhou, H.Y.: Quantum state sharing of an arbitrary two-qubit state with two-photon entanglements and Bell-state measurements. Eur. Phys. J. D 39, 459–464 (2006)ADSCrossRefGoogle Scholar
  32. 32.
    Man, Z.X., Xia, Y.J., An, N.B.: Quantum state sharing of an arbitrary multiqubit state using nonmaximally entangled GHZ states. Eur. Phys. J. D 42, 333–340 (2007)ADSCrossRefMathSciNetGoogle Scholar
  33. 33.
    Wang, Z.Y., Yuan, H., Shi, S.H., Zhang, Z.J.: Three-party qutrit-state sharing. Eur. Phys. J. D 41, 371–375 (2007)ADSCrossRefMathSciNetGoogle Scholar
  34. 34.
    Wang, Z.Y., Liu, Y.M., Wang, D., Zhang, Z.J.: Generalized quantum state sharing of arbitrary unknown two-qubit state. Opt. Commun. 276, 322–326 (2007)ADSCrossRefGoogle Scholar
  35. 35.
    Dong, L., Xiu, X.M., Gao, Y.J.: Multiparty quantum state sharing of m-qubit state. Int. J. Mod. Phys. C 18, 1699 (2007)ADSCrossRefMathSciNetMATHGoogle Scholar
  36. 36.
    Tao, Y.J., Tian, D.P., Hu, M.L., Qin, M.: Quantum state sharing of an arbitrary qudit state by using nonmaximally generalized GHZ state. Chin. Phys. B 17, 624–627 (2008)ADSCrossRefGoogle Scholar
  37. 37.
    Yuan, H., Liu, Y.M., Han, L.F., Zhang, Z.J.: Tripartite arbitrary two-qutrit quantum state sharing. Commun. Theor. Phys. 49, 1191–1194 (2008)ADSCrossRefGoogle Scholar
  38. 38.
    Xia, Y., Song, J., Song, H.S.: Quantum state sharing using linear optical elements. Opt. Commun. 281, 4946–4950 (2008)ADSCrossRefGoogle Scholar
  39. 39.
    Wang, T.J., Zhou, H.Y., Deng, F.G.: Quantum state sharing of an arbitrary m-qudit state with two-qudit entanglements and generalized Bell-state measurements. Physica A 387, 4716–4722 (2008)ADSCrossRefMathSciNetGoogle Scholar
  40. 40.
    Sheng, Y.B., Deng, F.G., Zhou, H.Y.: Efficient and economic five-party quantum state sharing of an arbitrary m-qubit state. Eur. Phys. J. D 48, 279–284 (2008)ADSCrossRefGoogle Scholar
  41. 41.
    Hou, K., Li, Y.B., Shi, S.H.: Quantum state sharing with a genuinely entangled five-qubit state and Bell-state measurements. Opt. Commun. 283, 1961–1965 (2010)ADSCrossRefGoogle Scholar
  42. 42.
    Wang, T.J., Deng, F.G.: Remote three-party quantum state sharing based on three-atom entangled states assisted by cavity qED and flying qubits. Commun. Theor. Phys. 55, 795–803 (2011)ADSCrossRefMathSciNetMATHGoogle Scholar
  43. 43.
    Nie, Y.Y., Li, Y.H., Liu, J.C., Sang, M.H.: Quantum state sharing of an arbitrary three-qubit state by using four sets of W-class states. Opt. Commun. 284, 1457–1460 (2011)ADSCrossRefGoogle Scholar
  44. 44.
    Shi, R., Huang, L., Yang, W., Zhong, H.: Asymmetric multi-party quantum state sharing of an arbitrary m-qubit state. Quantum Inf. Process 10, 53–61 (2011)CrossRefMathSciNetMATHGoogle Scholar
  45. 45.
    Shi, R., Huang, L., Yang, W., Zhong, H.: Multi-party quantum state sharing of an arbitrary two-qubit state with Bell states. Quantum Inf. Process 10, 231–239 (2011)CrossRefMathSciNetMATHGoogle Scholar
  46. 46.
    Zha, X.W., Zou, Z.C., Qi, J.X., Song, H.Y.: Bidirectional quantum controlled teleportation via five-qubit cluster state. Int. J. Theor. Phys. 52, 1740–1744 (2013)CrossRefMathSciNetGoogle Scholar
  47. 47.
    Li, Y.H., Nie, L.P.: Bidirectional controlled teleportation by using a five-qubit composite GHZ-Bell State. Int. J. Theor. Phys. 52, 1630–1634 (2013)CrossRefMathSciNetGoogle Scholar
  48. 48.
    Li, Y.H., Li, X.L., Sang, M.H., Nie, Y.Y., Wang, Z.S.: Bidirectional controlled quantum teleportation and secure direct communication using five-qubit entangled state. Quantum Inf. Process 12, 3835–3844 (2013)ADSCrossRefMathSciNetGoogle Scholar
  49. 49.
    Chitra, S., Anindita, B., Anirban, P.: Bidirectional controlled teleportation by using 5-qubit states: a generalized view. Int. J. Theor. Phys. 52, 3790–3796 (2013)CrossRefGoogle Scholar
  50. 50.
    Sun, X.M., Zha, X.W.: A scheme of bidirectional quantum controlled teleportation via six-qubit maximally entangled state. Acta. Photonica. Sinica 48, 1052–1056 (2013)Google Scholar
  51. 51.
    An, Y.: Bidirectional controlled teleportation via six-qubit cluster state. Int. J. Theor. Phys. 52, 3870–3873 (2013)CrossRefMATHGoogle Scholar
  52. 52.
    Zha, X.W., Song, H.Y., Qi, J.X., Wang, D., Lan, Q.: A maximally entangled seven-qubit state. J. Phys. A. Math. Theor. 45, 255302 (2012)ADSCrossRefMathSciNetGoogle Scholar
  53. 53.
    Boschi, D., Branca, S., Martini, F.D., Hardy, L., Popescu, S.: Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 80, 1121 (1998)ADSCrossRefMathSciNetMATHGoogle Scholar
  54. 54.
    Riebe, M., Haffner, H., Roos, C.F., et al.: Deterministic quantum teleportation with atoms. Nature 429, 734–737 (2004)ADSCrossRefGoogle Scholar
  55. 55.
    Barrett, M.D., Chiaverini, J., Schaetz, T., et al.: Deterministic quantum teleportation of atomic qubits. Nature 429, 737–739 (2004)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Ya-Jun Duan
    • 1
  • Xin-Wei Zha
    • 1
  • Xin-Mei Sun
    • 1
  • Jia-Fan Xia
    • 1
  1. 1.School of ScienceXi’an University of Posts and TelecommunicationsXi’anPeople’s Republic of China

Personalised recommendations