International Journal of Theoretical Physics

, Volume 53, Issue 7, pp 2349–2359 | Cite as

Quantization of Horizon Area from Accelerating and Rotating Black Hole

  • Hui-Ling Li
  • Yue Du
  • Wei Zheng
  • Zhi-Mei Zhang


Based on the ideas of adiabatic invariant quantity, and as a further study, adopting near horizon approximation, we attempt to quantize the horizon area of an accelerating and rotating black hole in two different coordinate frames. The area spectrum is obtained by imposing Bohr-Sommerfeld quantization rule and the laws of black hole thermodynamics to the modified adiabatic covariant action of the rotating black hole. The results show that the area spectrum of the black hole is \(\Delta A=8\pi {l_{p}^{2}}\), which confirms the initial proposal of Bekenstein.


Quantization Area spectrum Accelerating and rotating black hole 


  1. 1.
    Bekenstein, J.D.: The quantum mass spectrum of the Kerr black hole. Lett. Nuovo Cimento 11, 467 (1974)ADSCrossRefGoogle Scholar
  2. 2.
    Bekenstein, J.D.: Black holes and entropy. Phys. Rev. D 7, 2333 (1973)ADSMathSciNetGoogle Scholar
  3. 3.
    Hod, S.: Bohr’s correspondence principle and the area spectrum of quantum black holes. Phys. Rev. Lett. 81, 4293 (1998). arXiv:gr-qc/9812002 ADSCrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Kunstatter, G.: D-dimensional black hole entropy spectrum from quasi-normal modes. Phys. Rev. Lett. 90, 161301 (2003). arXiv:gr-qc/0212014 ADSCrossRefMathSciNetGoogle Scholar
  5. 5.
    Maggiore,M.: Physical interpretation of the spectrum of black hole quasinormal modes. Phys. Rev. Lett. 100, 141301 (2008). arXiv:gr-qc/0711.3145 ADSCrossRefMathSciNetGoogle Scholar
  6. 6.
    Kothawala, D., Padmanabhan, T., Sarkar, S.: Is gravitational entropy quantized? Phys. Rev. D 78, 104018 (2008). arXiv:gr-qc/0807.1481 ADSMathSciNetGoogle Scholar
  7. 7.
    López-Ortega, A.: Area spectrum of the D-dimensional de Sitter spacetime. Phys. Lett. B 682, 85 (2009). arXiv:gr-qc/0910.5779 ADSCrossRefGoogle Scholar
  8. 8.
    González, P., Papantonopoulos, E., Saavedra, J.: Chern-Simons black holes: scalar perturbations, mass and area spectrum and greybody factors. J. High Energy Phys. 1008, 050 (2010). arXiv:hep-th/1003.1381 ADSCrossRefGoogle Scholar
  9. 9.
    Wei, S.W., Li, R., Liu, Y.X., Ren, J.R.: Quantization of black hole entropy from quasinormal modes. J. High Energy Phys. 0903, 076 (2009). arXiv:hep-th/0901.0587 MathSciNetGoogle Scholar
  10. 10.
    Wei, S.W., Liu, Y.X. Area Spectrum of the Large AdS Black Hole from Quasinormal Modes (2009). arXiv:hep-th/0906.0908
  11. 11.
    Fernando, S.: Spinning dilaton black holes in 2+1 dimensions: quasinormal modes and the area spectrum. Phys. Rev. D 79, 124026 (2009). arXiv:gr-qc/0903.0088 ADSMathSciNetGoogle Scholar
  12. 12.
    Setare,M.R.,Momeni, D.: Spacing of the entropy spectrumfor KS Black hole in Hořava-Lifshitz gravity. Mod. Phys. Lett. A 26, 151 (2011). arXiv:hep-th/1002.0185 ADSCrossRefGoogle Scholar
  13. 13.
    Majhi, B.R.: Hawking radiation and black hole spectroscopy in Hořava Lifshitz gravity. Phys. Lett. B 686, 49 (2010). arXiv:hep-th/0911.3239
  14. 14.
    Kwon, Y., Nam, S.: Area spectra of the rotating BTZ black hole from quasinormal modes. Class. Quantum Grav. 27, 125007 (2010). arXiv:hep-th/1001.5106 ADSCrossRefMathSciNetGoogle Scholar
  15. 15.
    Myung, Y.S.: Area spectrum of slowly rotating black holes. Phys. Lett. B 689, 42 (2010). arXiv:hep-th/1003.3519 ADSCrossRefMathSciNetGoogle Scholar
  16. 16.
    Wei, S.W., Liu, Y.X., Yang, K., Zhong, Y.: Entropy/area spectra of the charged black hole from quasinormal modes. Phys. Rev. D 81, 104042 (2010). arXiv:hep-th/1002.1553 ADSGoogle Scholar
  17. 17.
    Zeng, X.X., Liu, X.M., Liu,W.B.: Periodicity and area spectrum of black holes. Eur. Phys. J. C 72, 1967 (2012). arXiv:gr-qc/1203.5947 ADSCrossRefGoogle Scholar
  18. 18.
    Zeng, X.X., Liu, W.B.: Spectroscopy of a Reissner-Nordstro¨m black hole via an action variable. Eur. Phys. J. C 72, 1987 (2012). arXiv:gr-qc/1204.1699 ADSCrossRefGoogle Scholar
  19. 19.
    Jiang, Q.Q., Han, Y., Cai, X.: Quantum corrections and black hole spectroscopy. J. High Energy Phys. 1008, 049 (2010). arXiv:hep-th/1007.4456 ADSCrossRefMathSciNetGoogle Scholar
  20. 20.
    Jiang, Q.Q., Cai, X.: Back reaction, emission spectrum and entropy spectroscopy. J. High Energy Phys. 1011, 066 (2010). arXiv:hep-th/1011.0243 ADSCrossRefMathSciNetGoogle Scholar
  21. 21.
    Ropotenko, K.: Quantum of area \(\Delta A=8\pi {l_{p}^{2}}\) and a statistical interpretation of black hole entropy. Phys. Rev. D 82, 044037 (2010). arXiv:gr-qc/0911.5635 ADSGoogle Scholar
  22. 22.
    Banerjee, R., Majhi, B.R., Vagenas, E.C.: Quantum tunneling and black hole spectroscopy. Phys. Lett. B 686, 279 (2009). arXiv:hep-th/0906.0908;hep-th/0907.4271 ADSGoogle Scholar
  23. 23.
    Majhi, B.R., Vagenas, E.C.: Black hole spectroscopy via adiabatic invariance. Phys. Lett. B 701, 623 (2011). arXiv:gr-qc/1106.2292 ADSCrossRefGoogle Scholar
  24. 24.
    Jiang, Q.Q., Han, Y.: On black hole spectroscopy via adiabatic invariance. Phys. Lett. B 718, 584 (2012). arXiv:hep-th/1210.4002 ADSCrossRefGoogle Scholar
  25. 25.
    Akhmedov, E.T., Akhmedova, V., Singleton, D.: Hawking temperature in the tunneling picture. Phys. Lett. B 642, 124 (2006). arXiv:hep-th/0608098 ADSCrossRefMathSciNetGoogle Scholar
  26. 26.
    Akhmedova, V., Pilling, T., de Gill, A., Singleton, D.: Temporal contribution to gravitational WKB-like calculations. Phys. Lett. B 666, 269 (2008). arXiv:hep-th/0804.2289 ADSCrossRefMathSciNetGoogle Scholar
  27. 27.
    Plebański, J.F., Demiański, M.: Rotating, charged, and uniformly accelerating mass in general relativity. Ann. Phys. NY 98, 98 (1976)ADSCrossRefMATHGoogle Scholar
  28. 28.
    Podolský, J., Kadlecová, H.: Radiation generated by accelerating and rotating charged black holes in (anti-)de Sitter space. Class. Quantum Grav. 26, 105007 (2009). arXiv:hep-th/0903.3577 ADSCrossRefGoogle Scholar
  29. 29.
    Griffiths, J.B., Podolsk´y, J.: Accelerating and rotating black holes. Class. Quantum Grav. 22, 3467 (2005). arXiv:gr-qc/0507021 ADSCrossRefMATHGoogle Scholar
  30. 30.
    Kerner, R., Mann, R.B.: Fermions tunnelling from black holes. Class. Quant. Grav. 25, 095014 (2008). arXiv:hep-th/0710.0612 ADSCrossRefMathSciNetGoogle Scholar
  31. 31.
    Gillani, U.A., Saifullah, K.: Tunneling of Dirac particles from accelerating and rotating black holes. Phys. Lett. B 699(15) (2011). arXiv:hep-th/1010.6106
  32. 32.
    Rehman, M., Saifullah, K.: Charged fermions tunneling from accelerating and rotating black holes. JCAP 1103, 001 (2011). arXiv:hep-th/1011.5129 ADSCrossRefGoogle Scholar
  33. 33.
    Parikh, M.K., Wilczek, F.: Hawking radiation as tunneling. Phys. Rev. Lett. 85, 5042 (2000). arXiv:hep-th/9907001 ADSCrossRefMathSciNetGoogle Scholar
  34. 34.
    Parikh, M.K.: New coordinates for de Sitter space and de Sitter radiation. Phys. Lett. B 546, 189 (2002). arXiv:hep-th/0204107 ADSCrossRefMATHMathSciNetGoogle Scholar
  35. 35.
    Parikh, M.K.: A secret tunnel through the horizon. Int. J. Mod. Phys. D 13, 2351 (2004)ADSCrossRefMathSciNetGoogle Scholar
  36. 36.
    Parikh, M.K. Gen. Rel. Grav. 36, 2419 (2004). arXiv:hep-th/0405160 ADSCrossRefMATHMathSciNetGoogle Scholar
  37. 37.
    Parikh, M.K.: Energy conservation and Hawking radiation, arXiv:hep-th/0402166
  38. 38.
    Zhang, J.Y., Zhao, Z.: Hawking radiation via tunneling from Kerr black holes. Mod. Phys. Lett. A 20, 1673 (2005)ADSCrossRefGoogle Scholar
  39. 39.
    Zhang, J.Y., Zhao, Z.: New coordinates for Kerr-Newman black hole radiation. Phys. Lett. B 618, 14 (2005)ADSCrossRefGoogle Scholar
  40. 40.
    Zhang, J.Y., Zhao, Z.: Charged particles’ tunnelling from the Kerr-Newman black hole. Phys. Lett. B 638, 110 (2006). arXiv:gr-qc/0512153 ADSGoogle Scholar
  41. 41.
    Zhang, J.Y., Zhao, Z.: Hawking radiation of charged particles via tunneling from the Reissner-Nordström black holes. J. High Energy Phys. 0510, 055 (2005)ADSCrossRefGoogle Scholar
  42. 42.
    Zhang, J.Y., Zhao, Z.:Massive particles’ black hole tunneling and de Sitter tunneling. Nucl. Phys. B 725, 173 (2005)ADSCrossRefGoogle Scholar
  43. 43.
    Jiang, Q.Q.,Wu, S.Q.: Hawking radiation of charged particles as tunneling from Reissner-Nordström-de Sitter black holes with a global monopole. Phys. Lett. B 635, 151 (2006). arXiv:hep-th/0511123 ADSCrossRefMathSciNetGoogle Scholar
  44. 44.
    Wu, S.Q., Jiang, Q.Q.: Remarks on Hawking radiation as tunneling from the BTZ black holes. J. High Energy Phys. 0603, 079 (2006). arXiv:hep-th/0602033 ADSCrossRefMathSciNetGoogle Scholar
  45. 45.
    Liu,W.B.: New coordinates for BTZ black hole and Hawking radiation via tunnelling. Phys. Lett. B 634, 541 (2006). arXiv:gr-qc/0512099 ADSCrossRefGoogle Scholar
  46. 46.
    Liu, W.B.: Hawking radiation as tunnelling in static black holes. arXiv:gr-qc/0512098
  47. 47.
    Chen, D.Y., Jiang, Q.Q., Zu, X.T.: Hawking radiation of Dirac particles via tunnelling from rotating black holes in de Sitter spaces. Phys. Lett. B 665, 106 (2008). arXiv:hep-th/0804.0131
  48. 48.
    Chen, D.Y., Yang, H.T., Zu, X.T.: Fermion tunneling from anti-de Sitter spaces. Eur. Phys. J. C 56, 119 (2008)ADSCrossRefMathSciNetGoogle Scholar
  49. 49.
    Li, R., Ren, J.R.: Dirac particles tunneling from BTZ black hole. Phys. Lett. B 661, 370 (2008). arXiv:gr-qc/0802.3954v1 ADSCrossRefMathSciNetGoogle Scholar
  50. 50.
    Li, R., Ren, J.R., Wei, S.W.: Hawking radiation of Dirac particles via tunneling from Kerr black hole. Class. Quantum Gravit. 25, 125016 (2008). arXiv:gr-qc/0803.1410 ADSCrossRefMathSciNetGoogle Scholar
  51. 51.
    Li, R., Ren, J.R.: Holographic dual of linear dilaton black hole in Einstein-Maxwell-Dilaton-Axion gravity. J. High Energy Phys. 1009, 039 (2010). arXiv:hep-th/1009.3139 ADSCrossRefMathSciNetGoogle Scholar
  52. 52.
    Li, H.L., Qi, W.Y., Lin, R.: Hawking radiation of Dirac particles from Kerr-AdS black hole in five dimensions. Phys. Lett. B 677, 332 (2009)ADSCrossRefMathSciNetGoogle Scholar
  53. 53.
    Li, H.L.: Charged Dirac particles’ Hawking radiation via tunneling from the general non-extremal rotating charged black hole of D=5 minimal gauged supergravity. Eur. Phys. J. C 65, 547 (2010)ADSCrossRefGoogle Scholar
  54. 54.
    Painlevé, P.: La, mécanique classique et la th´eorie de la relativit´e. Comput. Rend. Acad. Sci. (Paris) 173, 677 (1921)MATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.College of Physics Science and TechnologyShenyang Normal UniversityShenyangChina

Personalised recommendations