Advertisement

International Journal of Theoretical Physics

, Volume 53, Issue 6, pp 1961–1970 | Cite as

Information Entropy to Probe Revivals in Dynamical Systems

  • Tasawar Abbas
  • Farhan Saif
Article

Abstract

It is shown that sum of information entropies in position and momentum space, quantifies the temporal information in wave packet dynamics of a dynamical system. Quantum fractional revivals are investigated on these bases in periodically driven Fermi-Ulam accelerator. It is observed that the entropic measure provides deeper insight of the wave packet dynamics for the long time evolution as compared with conventional autocorrelation function. It is shown that these revival times are not symmetric in driven situations and may lead to a random behavior.

Keywords

Coherent structure Time-dependent phenomena Quantum recurrences Fermi-Ulam accelerator Entropy 

References

  1. 1.
    Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 623 (1948) CrossRefMathSciNetGoogle Scholar
  2. 2.
    Von Neumann, J.: Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton (1955) MATHGoogle Scholar
  3. 3.
    Desurvire, E.: Classical and Quantum Information Theory: An Introduction for the Telecom Scientist. Cambridge University Press, Cambridge (2009) CrossRefGoogle Scholar
  4. 4.
    Bialynicki-Birula, I., Mycielski, J.: Uncertainty relations for information entropy in wave mechanics. Commun. Math. Phys. 44, 129 (1975) ADSCrossRefMathSciNetGoogle Scholar
  5. 5.
    Wehrl, A.: General properties of entropy. Rev. Mod. Phys. 50, 221 (1978) ADSCrossRefMathSciNetGoogle Scholar
  6. 6.
    Vedral, V.: The role of relative entropy in quantum information theory. Rev. Mod. Phys. 74, 197 (2002) ADSCrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Ohya, M., Watanabe, N.: Quantum entropy and its applications to quantum communication and statistical physics. Entropy 12, 1194 (2010) ADSCrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Dunkel, J., Trigger, S.A.: Time-dependent entropy of simple quantum model systems. Phys. Rev. A 71, 052102 (2005) ADSCrossRefGoogle Scholar
  9. 9.
    Garbaczewski, P.: Comment on “Time-dependent entropy of simple quantum model systems”. Phys. Rev. A 72, 056101 (2005) ADSCrossRefGoogle Scholar
  10. 10.
    Romera, E., de los Santos, F.: Identifying wave packet fractional revivals by means of information entropy. Phys. Rev. Lett. 99, 263601 (2007) ADSCrossRefGoogle Scholar
  11. 11.
    Abbas, T., Saif, F.: Dynamical revivals in spatiotemporal evolution of driven one dimensional box. J. Math. Phys. 51, 102107 (2010) ADSCrossRefMathSciNetGoogle Scholar
  12. 12.
    Abbas, T., Saif, F.: Dynamical quantum revivals in phase space. J. Russ. Laser Res. 33, 448 (2012) CrossRefGoogle Scholar
  13. 13.
    Saif, F.: Classical and quantum chaos in atom optics. Phys. Rep. 419, 207 (2005) ADSCrossRefGoogle Scholar
  14. 14.
    Saif, F., Fortunato, M.: Quantum revivals in periodically driven systems close to nonlinear resonances. Phys. Rev. A 65, 013401 (2001) ADSCrossRefGoogle Scholar
  15. 15.
    Saif, F., Alber, G., Savichev, V., Schleich, W.P.: Quantum revivals in a periodically driven gravitational cavity. J. Opt. B, Quantum Semiclass. Opt. 2, 668 (2000) ADSCrossRefGoogle Scholar
  16. 16.
    Saif, F.: Nature of quantum recurrences in coupled higher dimensional systems. Eur. Phys. J. D 39, 87 (2006) ADSCrossRefGoogle Scholar
  17. 17.
    Robinett, R.W.: Quantum wave packet revivals. Phys. Rep. 392, 1 (2004) ADSCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of PhysicsCOMSATS Institute of Information TechnologyIslamabadPakistan
  2. 2.Department of ElectronicsQuaid-i-Azam UniversityIslamabadPakistan

Personalised recommendations