Advertisement

International Journal of Theoretical Physics

, Volume 53, Issue 6, pp 1920–1929 | Cite as

The Dynamics of Quantum Correlations Between Two Atoms in Two Coupled Cavities

  • Bao-Liang Cao
  • Ying Shi
  • Dong-Guang Jiang
Article

Abstract

The dynamics of the quantum correlation between two atoms in two single-mode cavities is studied. For the initial Bell state |Ψ +〉, the quantum consonance is equal to the entanglement, and larger than quantum discord. For the initial Bell state |Φ +〉, the quantum consonance is larger than entanglement, but not larger than quantum discord all the time. As the increase of the cavity-cavity coupling strength, the evolution period of quantum correlation becomes smaller. Consonance is not smooth at some points while cavities are coupled with each other.

Keywords

Quantum correlations Bell state Density matrix 

Notes

Acknowledgement

Special thanks to Prof Li Chong and Zheng Li for helpful discussions. This work is supported by the National Nature Science Foundation of China (under Grant No. 11105021).

References

  1. 1.
    Einstein, A., Podolsky, B., Rosen, N.: Phys. Rev. 47, 777 (1935) ADSCrossRefMATHGoogle Scholar
  2. 2.
    Bell, J.S.: Physics 1, 195 (1964) Google Scholar
  3. 3.
    Nielsen, M.A., Chuan, I.L.: Quantum Computational and Quantum Information. Cambridge University Press, Cambridge (2000) Google Scholar
  4. 4.
    Ollivier, H., Zurek, W.H.: Phys. Rev. Lett. 88, 017901 (2001) ADSCrossRefGoogle Scholar
  5. 5.
    Oppenheim, J., Horodecki, M., Horodecki, P., Horodecki, R.: Phys. Rev. Lett. 89, 180402 (2002) ADSCrossRefGoogle Scholar
  6. 6.
    Lanyon, B.P., Barbieri, M., Almeida, M.P., White, A.G.: Phys. Rev. Lett. 101, 200501 (2008) ADSCrossRefGoogle Scholar
  7. 7.
    Datta, A., Shaji, A., Caves, C.M.: Phys. Rev. Lett. 100, 050502 (2008) ADSCrossRefGoogle Scholar
  8. 8.
    Pei, P., Wang, W., Li, C., Song, H.-S.: Int. J. Theor. Phys. 51, 3350 (2012). doi: 10.1007/s10773-012-1215-6 CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Yonac, M., Yu, T., Eberly, J.H.: J. Phys. B, At. Mol. Opt. Phys. 39, S621 (2006) ADSCrossRefGoogle Scholar
  10. 10.
    Wang, C., Chen, Q.-H.: Chin. Phys. B 22, 040304 (2013). arXiv:1202.5817 ADSCrossRefGoogle Scholar
  11. 11.
    Song, J., Xia, Y., Sun, X.-D., Song, H.-S.: Phys. Rev. A 86, 034303 (2012) ADSCrossRefGoogle Scholar
  12. 12.
    Henderson, L., Vedral, V.: J. Phys. A 34, 6899 (2001) ADSCrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Vedral, V.: Phys. Rev. Lett. 90, 050401 (2003) ADSCrossRefMathSciNetGoogle Scholar
  14. 14.
    Maziero, J., Celeri, C., Serra, R.M., Vedral, V.: Phys. Rev. A 80, 044102 (2009) ADSCrossRefMathSciNetGoogle Scholar
  15. 15.
    Luo, S.: Phys. Rev. A 77, 042303 (2008) ADSCrossRefGoogle Scholar
  16. 16.
    Li, N., Luo, S.: Phys. Rev. A 76, 032327 (2007) ADSCrossRefGoogle Scholar
  17. 17.
    Luo, S.: Phys. Rev. A 77, 022301 (2008) ADSCrossRefGoogle Scholar
  18. 18.
    Wootters, W.K.: Phys. Rev. Lett. 80, 2245 (1998) ADSCrossRefGoogle Scholar
  19. 19.
    Yu, T., Eberly, J.H.: Phys. Rev. Lett. 93, 140404 (2004) ADSCrossRefGoogle Scholar
  20. 20.
    Yu, T., Eberly, J.H.: Opt. Commun. 264, 393–397 (2006) ADSCrossRefGoogle Scholar
  21. 21.
    Wang, B., Xu, Z.-Y., Chen, Z.-Q., Feng, M.: Phys. Rev. A 81, 014101 (2010) ADSCrossRefGoogle Scholar
  22. 22.
    Song, J., Xia, Y., Sun, X.-D.: J. Opt. Soc. Am. B 29(3), 268 (2012) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.School of Physics and Optoelectronic EngineeringDalian University of TechnologyDalianP.R. China

Personalised recommendations