Advertisement

International Journal of Theoretical Physics

, Volume 53, Issue 5, pp 1779–1783 | Cite as

Cosmological Parameters from the Thermodynamic Model of Gravity

  • Merab Gogberashvili
  • Igor Kanatchikov
Article
  • 89 Downloads

Abstract

Within our recent thermodynamic model of gravity the dark energy is identified with the energy of collective gravitational interactions of all particles in the universe, which is missing in the standard treatments. For a simple model universe composed of neutral and charged particles of identical mass we estimate the radiation, baryon and dark energy densities and obtain the values which are very close to the current cosmological observations.

Keywords

Thermodynamic gravity Dark energy Cosmological parameters 

References

  1. 1.
    Bardeen, J.M., Carter, B., Hawking, S.W.: Commun. Math. Phys. 31, 161 (1973) ADSCrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Bekenstein, J.D.: Phys. Rev. D 7, 2333 (1973) ADSCrossRefMathSciNetGoogle Scholar
  3. 3.
    Hawking, S.W.: Commun. Math. Phys. 43, 199 (1975) ADSCrossRefMathSciNetGoogle Scholar
  4. 4.
    Unruh, W.G.: Phys. Rev. D 14, 870 (1976) ADSCrossRefGoogle Scholar
  5. 5.
    Maldacena, J.M.: Adv. Theor. Math. Phys. 2, 231 (1998). arXiv:hep-th/9711200 ADSMATHMathSciNetGoogle Scholar
  6. 6.
    Jacobson, T.: Phys. Rev. Lett. 75, 1260 (1995). arXiv:gr-qc/9504004 ADSCrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Wang, T.: Phys. Rev. 81, 104045 (2010). arXiv:1001.4965 [hep-th] Google Scholar
  8. 8.
    Verlinde, E.P.: J. High Energy Phys. 1104, 029 (2011). arXiv:1001.0785 [hep-th] ADSCrossRefMathSciNetGoogle Scholar
  9. 9.
    Padmanabhan, T.: Class. Quantum Gravity 21, 4485 (2004). arXiv:gr-qc/0308070 ADSCrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Padmanabhan, T.: Rep. Prog. Phys. 73, 046901 (2010). arXiv:0911.5004 [gr-qc] ADSCrossRefGoogle Scholar
  11. 11.
    Hu, B.L.: Int. J. Mod. Phys. D 20, 697 (2011). arXiv:1010.5837 [gr-qc] ADSCrossRefMATHGoogle Scholar
  12. 12.
    Wetterich, C.: Ann. Phys. 325, 1359 (2010). arXiv:1003.3351 [quant-ph] ADSCrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Wetterich, C.: J. Phys. Conf. Ser. 174, 012008 (2009). arXiv:0811.0927 [quant-ph] ADSCrossRefGoogle Scholar
  14. 14.
    Grössing, G.: Physica A 388, 811 (2009). arXiv:0808.3539 [quant-ph] ADSCrossRefMathSciNetGoogle Scholar
  15. 15.
    Grössing, G.: Phys. Lett. A 372, 4556 (2008). arXiv:0711.4954 [quant-ph] ADSCrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Gogberashvili, M.: Eur. Phys. J. C 63, 317 (2009). arXiv:0807.2439 [gr-qc] ADSCrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Gogberashvili, M.: Eur. Phys. J. C 54, 671 (2008). arXiv:0707.4308 [hep-th] ADSCrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Gogberashvili, M.: Int. J. Theor. Phys. 50, 2391 (2011). arXiv:1008.2544 [gr-qc] CrossRefMATHGoogle Scholar
  19. 19.
    Gogberashvili, M., Kanatchikov, I.: Int. J. Theor. Phys. 51, 985 (2012). arXiv:1012.5914 [physics.gen-ph] CrossRefMATHGoogle Scholar
  20. 20.
    Feynman, R.P., Morinigo, F.B., Wagner, G.: Feynman Lectures on Gravitation. Addison-Wesley, Reading (1995) Google Scholar
  21. 21.
    Hawking, S.: A Brief History of Time. Bantam, Toronto (1988) Google Scholar
  22. 22.
    Dirac, P.A.M.: Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 338, 439 (1974) ADSCrossRefGoogle Scholar
  23. 23.
    Jarosik, N., et al. (WMAP Collaboration): Astrophys. J. Suppl. Ser. 192, 14 (2011). arXiv:1001.4744 [astro-ph.CO] ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Andronikashvili Institute of PhysicsTbilisiGeorgia
  2. 2.Javakhishvili State UniversityTbilisiGeorgia
  3. 3.National Quantum Information Center of GdańskSopotPoland

Personalised recommendations