Skip to main content
Log in

Quantum Private Comparison Protocol with W States

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We propose a secure quantum protocol for comparing the equality of information with the help of a semi-honest third party (Trent). Our protocol utilizes the triplet W states, and the single-particle measurement. The technique for preparing W state is mature, which ensures the utility of our protocol. The security of our protocol with respect to both outsider attack and participant attack is discussed. Any information about the private information, the comparison result will not be leaked out, even the third party cannot know these information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. In: IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, pp. 175–179. IEEE Press, New York (1984)

    Google Scholar 

  2. Ekert, A.K.: Quantum cryptography based on Bell theorem. Phys. Rev. Lett. 67(6), 661–663 (1991)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68(21), 3121–3124 (1992)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. Liu, B., Gao, F., Wen, Q.Y.: Single-photon multiparty quantum cryptographic protocols with collective detection. IEEE J. Quantum Electron. 47, 1389–1390 (2011)

    ADS  Google Scholar 

  5. Hillery, M., Buzěk, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  6. Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)

    Article  ADS  Google Scholar 

  7. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  8. Lin, S., Wen, Q.Y., Gao, F., Zhu, F.C.: Quantum secure direct communication with chi-type entangled states. Phys. Rev. A 78, 064304 (2008)

    Article  ADS  Google Scholar 

  9. Zhang, W.-W., Gao, F., Liu, B., et al.: A watermark strategy for quantum images based on quantum Fourier transform. Quantum Inf. Process. (2012). doi:10.1007/s11128-012-0423-6

    Google Scholar 

  10. Zhang, W.-W., Gao, F., Liu, B., et al.: A quantum watermark protocol. Int. J. Theor. Phys. (2012). doi:10.1007/s10773-012-1354-9

    Google Scholar 

  11. Yao, A.C.: Protocols for secure computations. In: Proceedings of 23rd IEEE Symposium on Foundations of Computer Science, FOCS’82, Washington, DC, USA, p. 160 (1982)

    Google Scholar 

  12. Boudot, F., Schoenmakers, B., Traore, J.: A fair and efficient solution to the socialist millionaires’ problem. Discrete Appl. Math. 111(1–2), 23–36 (2001) (Special Issue on Coding and Cryptology)

    Article  MATH  MathSciNet  Google Scholar 

  13. Lo, H.K.: Insecurity of quantum secure computations. Phys. Rev. A 56(2), 1154–1162 (1997)

    Article  ADS  Google Scholar 

  14. Yang, Y.G., Wen, Q.Y.: An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J. Phys. A, Math. Theor. 42, 055305 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  15. Yang, Y.G., Cao, W.F., Wen, Q.Y.: Secure quantum private comparison. Phys. Scr. 80(6), 065002 (2009)

    Article  ADS  Google Scholar 

  16. Chen, X.-B., Xu, G., Niu, X.-X., Wen, Q.-Y., Yang, Y.-X.: An efficient protocol for the private comparison of equal information based on the triplet entangled state and single-particle measurement. Opt. Commun. 283, 1561–1565 (2010)

    Article  ADS  Google Scholar 

  17. Liu, W., Wang, Y.-B., Jiang, Z.-T.: An efficient protocol for the quantum private comparison of equality with W state. Opt. Commun. 284, 3160–3163 (2011)

    Article  ADS  Google Scholar 

  18. Liu, W., Wang, Y.-B., Cui, W.: Quantum private comparison protocol based on Bell entangled states. Commun. Theor. Phys. 57, 583–588 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  19. Liu, W., Wang, Y.-B., Jiang, Z.-T., Cao, Y.-Z.: A protocol for the quantum private comparison of equality with χ-type state. Int. J. Theor. Phys. 51, 69–77 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  20. Liu, W., Wang, Y.-B., Jiang, Z.-T., Cao, Y.-Z., Cui, W.: New quantum private comparison protocol using χ-type state. Int. J. Theor. Phys. 51, 1953–1960 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  21. Liu, W., Wang, Y.-B.: Quantum private comparison based on GHZ entangled states. Int. J. Theor. Phys. (2012). doi:10.1007/s10773-012-1246-z

    Google Scholar 

  22. Jia, H.-Y., Wen, Q.-Y., Li, Y.-B., Gao, F.: Quantum private comparison using genuine four-particle entangled states. Int. J. Theor. Phys. 51, 1187–1194 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  23. Liu, B., Gao, F., Jia, H.-y., Huang, W., Zhang, W.-w., Wen, Q.-y.: Efficient quantum private comparison employing single photons and collective detection. Quantum Inf. Process. (2012). doi:10.1007/s11128-012-0439-y

    Google Scholar 

  24. Tseng, H.-Y., Lin, J., Hwang, T.: New quantum private comparison protocol using EPR pairs. Quantum Inf. Process. 11, 373–384 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  25. Yang, Y.-G., Xia, J., Jia, X., Zhang, H.: Comment on “quantum private comparison protocols with a semi-honest third party”. Quantum Inf. Process. (2012). doi:10.1007/s11128-012-0433-4

    Google Scholar 

  26. Zhang, W.-W., Zhang, K.-J.: Cryptanalysis and improvement of the quantum private comparison protocol with semi-honest third party. Quantum Inf. Process. (2012). doi:10.1007/s11128-012-0507-3

    Google Scholar 

  27. Dür, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  28. Duan, L.M., Kimble, H.: Scalable photonic quantum computation through cavity-assisted interactions. Phys. Rev. Lett. 92, 127902 (2004)

    Article  ADS  Google Scholar 

  29. Deng, Z.J., Feng, M., Gao, K.L.: Preparation of entangled states of four remote atomic qubits in decoherence-free subspace. Phys. Rev. A 75, 024302 (2007)

    Article  ADS  Google Scholar 

  30. Lin, X.M., Xue, P., Chea, M.Y., et al.: Scalable preparation of multiple-particle entangled states via the cavity input–output process. Phys. Rev. A 74, 052339 (2006)

    Article  ADS  Google Scholar 

  31. Lin, G.W., Lin, X.M., Chen, L.B., et al.: Generation of multiple-particle cluster state via cavity QED. Chin. Phys. B 17, 64 (2008)

    Article  ADS  Google Scholar 

  32. Zheng, H.Y., Zhang, X.T., Shao, X.Q., et al.: Generation of multi-photon cluster states through the cavity input–output process. Chin. Phys. Lett. 25, 836–838 (2008)

    Article  ADS  Google Scholar 

  33. Pan, G.-z., et al.: Generation of multi-atom entangled states through the cavity input-output process. J. Anhui Univ. Natur. Sci. Ed. 34, 5 (2010)

    Google Scholar 

  34. Joo, J., Park, Y.J.: Quantum secure communication via a W state. J. Korean Phys. Soc. 46(4), 763 (2005)

    Google Scholar 

  35. Li, Y.B., Wen, Q.Y., Gao, F., Jia, H.Y., Sun, Y.: Information leak in Liu et al.’s quantum private comparison and a new protocol. Eur. Phys. J. D 66, 110 (2012)

    Article  ADS  Google Scholar 

  36. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)

    Article  ADS  Google Scholar 

  37. Gao, F., Qin, S.J., Wen, Q.Y., Zhu, F.C.: A simple participant attack on the Bradler–Dusek protocol. Quantum Inf. Comput. 7, 329 (2007)

    MATH  MathSciNet  Google Scholar 

  38. Qin, S.J., Gao, F., Wen, Q.Y., et al.: Cryptanalysis of the Hillery-Buzek-Berthiaume quantum secret-sharing protocol. Phys. Rev. A 76, 062324 (2007)

    Article  ADS  Google Scholar 

  39. Song, T.T., Zhang, J., Gao, F., et al.: Participant attack on quantum secret sharing based on entanglement swapping. Chin. Phys. B 18, 1333 (2009)

    Article  ADS  Google Scholar 

  40. Lin, S., Wen, Q.Y., Gao, F., et al.: Improving the security of multiparty quantum secret sharing based on the improved Bostrom-Felbinger protocol. Opt. Commun. 281, 4553 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by NSFC (Grant Nos. 61272057, 61170270, 61100203, 61003286, 61121061), NCET (Grant No. NCET-10-0260), SRFDP (Grant No. 20090005110010), Beijing Natural Science Foundation (Grant Nos. 4112040, 4122054), the Fundamental Research Funds for the Central Universities (Grant No. 2011YB01), BUPT Excellent Ph.D. Students Foundation (Grant No. CX201325).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Wei Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, WW., Li, D. & Li, YB. Quantum Private Comparison Protocol with W States. Int J Theor Phys 53, 1723–1729 (2014). https://doi.org/10.1007/s10773-013-1970-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-013-1970-z

Keywords

Navigation