International Journal of Theoretical Physics

, Volume 53, Issue 5, pp 1685–1696 | Cite as

Some Remarks on Kite Pseudo Effect Algebras

  • Anatolij Dvurečenskij
  • W. Charles Holland


Recently a new family of pseudo effect algebras, called kite pseudo effect algebras, was introduced. Such an algebra starts with a po-group G, a set I and with two bijections λ,ρ:II. Using a clever construction on the ordinal sum of (G +) I and (G ) I , we can define a pseudo effect algebra which can be non-commutative even if G is an Abelian po-group. In the paper we give a characterization of subdirect product of subdirectly irreducible kite pseudo effect algebras, and we show that every kite pseudo effect algebra is an interval in a unital po-loop.


Pseudo MV-algebra Pseudo effect algebra -group Po-group Strong unit Kite pseudo effect algebra Subdirect product Po-loop 



The authors are very indebted to an anonymous referee for his/her careful reading and suggestions which helped to improve the readability of the paper.


  1. 1.
    Burris, S., Sankappanavar, H.P.: A Course in Universal Algebra (2000). The Millennium Edition Google Scholar
  2. 2.
    Dvurečenskij, A.: Pseudo MV-algebras are intervals in -groups. J. Aust. Math. Soc. 72, 427–445 (2002) CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Dvurečenskij, A.: Ideals of pseudo-effect algebras and their applications. Tatra Mt. Math. Publ. 27, 45–65 (2003) MATHMathSciNetGoogle Scholar
  4. 4.
    Dvurečenskij, A.: Kite pseudo effect algebras. Found. Phys. 43, 1314–1338 (2013). doi: 10.1007/s10701-013-9748-y ADSCrossRefMathSciNetGoogle Scholar
  5. 5.
    Dvurečenskij, A., Vetterlein, T.: Pseudoeffect algebras. I. Basic properties. Int. J. Theor. Phys. 40, 685–701 (2001) CrossRefMATHGoogle Scholar
  6. 6.
    Dvurečenskij, A., Vetterlein, T.: Pseudoeffect algebras. II. Group representation. Int. J. Theor. Phys. 40, 703–726 (2001) CrossRefMATHGoogle Scholar
  7. 7.
    Dvurečenskij, A., Vetterlein, T.: Congruences and states on pseudo-effect algebras. Found. Phys. Lett. 14, 425–446 (2001) CrossRefMathSciNetGoogle Scholar
  8. 8.
    Dvurečenskij, A., Vetterlein, T.: Non-commutative algebras and quantum structures. Int. J. Theor. Phys. 43, 1599–1612 (2004) CrossRefMATHGoogle Scholar
  9. 9.
    Dvurečenskij, A., Kowalski, T.: Kites and pseudo BL-algebras. Algebra Univers. (to appear).
  10. 10.
    Foulis, D.J., Bennett, M.K.: Effect algebras and unsharp quantum logics. Found. Phys. 24, 1325–1346 (1994) ADSCrossRefMathSciNetGoogle Scholar
  11. 11.
    Fuchs, L.: Partially Ordered Algebraic Systems. Pergamon Press, Oxford (1963) MATHGoogle Scholar
  12. 12.
    Georgescu, G., Iorgulescu, A.: Pseudo-MV algebras. Mult. Valued Log. 6, 95–135 (2001) MATHMathSciNetGoogle Scholar
  13. 13.
    Glass, A.M.W.: Partially Ordered Groups. World Scientific, Singapore (1999) CrossRefMATHGoogle Scholar
  14. 14.
    Jipsen, P., Montagna, F.: On the structure of generalized BL-algebras. Algebra Univers. 55, 226–237 (2006) CrossRefMathSciNetGoogle Scholar
  15. 15.
    Rachůnek, J.: A non-commutative generalization of MV-algebras. Czechoslov. Math. J. 52, 255–273 (2002) CrossRefMATHGoogle Scholar
  16. 16.
    Ravindran, K.: On a structure theory of effect algebras. Ph.D. thesis, Kansas State University, Manhattan, Kansas (1996) Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Mathematical InstituteSlovak Academy of SciencesBratislavaSlovakia
  2. 2.Department Algebra GeometryPalacký UniversityOlomoucCzech Republic
  3. 3.Department of MathematicsUniversity of ColoradoBoulderUSA

Personalised recommendations