International Journal of Theoretical Physics

, Volume 53, Issue 5, pp 1628–1636 | Cite as

Analysis of Adiabatic Approximation Using Stable Hamiltonian Method

  • Yi-Tian DingEmail author


In this paper, we deal with the adiabatic approximation of general Hamiltonians by splitting it into two parts, with one part a Hamiltonian that has at least one time-independent eigenstate up to a phase factor. We first develop the method of finding this kind of Hamiltonians. Then the relationship between adiabatic approximation and these Hamiltonians is discussed. Applying this to a general case, we give both a necessary condition and a sufficient condition for adiabatic approximation, followed by a spin-half example to illustrate.


Adiabatic approximation Stable Hamiltonian Necessary condition Sufficient condition 



The work was supported by Basic Sciences Training Funds of China NO. J1103212.


  1. 1.
    Ehrenfest, P.: On adiabatic changes of a system in connection with the quantum theory. Proc. Amsterdam Acad. 19, 576–597 (1916) Google Scholar
  2. 2.
    Born, M., Fock, V.: Beweis des adiabatensatzes. Z. Phys. 51(3–4), 165–180 (1928) ADSCrossRefzbMATHGoogle Scholar
  3. 3.
    Schwinger, J.: On nonadiabatic processes in inhomogeneous fields. Phys. Rev. 51(8), 648–651 (1937) ADSCrossRefGoogle Scholar
  4. 4.
    Kato, T.: On the adiabatic theorem of quantum mechanics. J. Phys. Soc. Jpn. 5(6), 435–439 (1950) ADSCrossRefGoogle Scholar
  5. 5.
    Landau, L.D.: On the theory of transfer of energy at collisions II. Phys. Z. Sowjetunion 2(46) (1932) Google Scholar
  6. 6.
    Zener, C.: Dissociation of excited diatomic molecules by external perturbations. Proc. R. Soc. Lond. Ser. A 140(842), 660–668 (1933) ADSCrossRefzbMATHGoogle Scholar
  7. 7.
    Gell-Mann, M., Low, F.: Bound states in quantum field theory. Phys. Rev. 84(2), 350–354 (1951) ADSCrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Berry, M.V.: Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 392(1802), 45–57 (1984) ADSCrossRefzbMATHGoogle Scholar
  9. 9.
    Farhi, E., Goldstone, J., Gutmann, S., et al.: A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem. Science 292(5516), 472–475 (2001) ADSCrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Joshi, C., Larson, J., Jonson, M., et al.: Entanglement of distant optomechanical systems. Phys. Rev. A 85(3), 033805 (2012) ADSCrossRefGoogle Scholar
  11. 11.
    Mohammady, M.H., Morley, G.W., Nazir, A., et al.: Analysis of quantum coherence in bismuth-doped silicon: a system of strongly coupled spin qubits. Phys. Rev. B 85(5), 094404 (2012) ADSCrossRefGoogle Scholar
  12. 12.
    Rigolin, G., Ortiz, G.: Adiabatic theorem for quantum systems with spectral degeneracy. Phys. Rev. A 85(6), 062111 (2012) ADSCrossRefGoogle Scholar
  13. 13.
    Cullimore, M., Everitt, M.J., Ormerod, M.A., et al.: Relationship between minimum gap and success probability in adiabatic quantum computing. J. Phys. A, Math. Theor. 45(50), 505305 (2012) CrossRefMathSciNetGoogle Scholar
  14. 14.
    Marzlin, K.P., Sanders, B.C.: Inconsistency in the application of the adiabatic theorem. Phys. Rev. Lett. 93(16), 160408 (2004) ADSCrossRefGoogle Scholar
  15. 15.
    Tong, D.M., Singh, K., Kwek, L.C., et al.: Quantitative conditions do not guarantee the validity of the adiabatic approximation. Preprint (2005). arXiv:quant-ph/0509073
  16. 16.
    Duki, S., Mathur, H., Narayan, O.: Preceding comment. Phys. Rev. Lett. 97, 128901 (2006) ADSCrossRefGoogle Scholar
  17. 17.
    Ma, J., Zhang, Y., Wang, E., et al.: Comment II on inconsistency in the application of the adiabatic theorem. Phys. Rev. Lett. 97(12), 128902 (2006) ADSCrossRefGoogle Scholar
  18. 18.
    Du, J., Hu, L., Wang, Y., et al.: Experimental study of the validity of quantitative conditions in the quantum adiabatic theorem. Phys. Rev. Lett. 101(6), 060403 (2008) ADSCrossRefGoogle Scholar
  19. 19.
    Amin, M.H.S.: Consistency of the adiabatic theorem. Phys. Rev. Lett. 102, 220401 (2009) ADSCrossRefMathSciNetGoogle Scholar
  20. 20.
    Tong, D.M., Singh, K., Kwek, L.C., et al.: Sufficiency criterion for the validity of the adiabatic approximation. Phys. Rev. Lett. 98(15), 150402 (2007) ADSCrossRefGoogle Scholar
  21. 21.
    Maamache, M., Saadi, Y.: Adiabatic theorem and generalized geometrical phase in the case of continuous spectra. Phys. Rev. Lett. 101(15), 150407 (2008) ADSCrossRefGoogle Scholar
  22. 22.
    Lidar, D.A., Rezakhani, A.T., Hamma, A.: Adiabatic approximation with exponential accuracy for many-body systems and quantum computation. J. Math. Phys. 50, 102106 (2009) ADSCrossRefMathSciNetGoogle Scholar
  23. 23.
    Duan, Q.H., Chen P, X., Wu, W.: Adiabatic conditions and the uncertainty relation. Preprint (2011). arXiv:1102.0128
  24. 24.
    Cao, H.X., Guo, Z.H., Chen, Z.L., et al.: Quantitative sufficient conditions for adiabatic approximation. Sci. China, Ser. G, Phys. Astron. 1(215) (2013) Google Scholar
  25. 25.
    Larson, J., Stenholm, S.: Validity of adiabaticity in cavity QED. Phys. Rev. A 73(3), 033805 (2006) ADSCrossRefGoogle Scholar
  26. 26.
    Tong, D.M., Yi, X.X., Fan, X.J., et al.: Examination of the adiabatic approximation in open systems. Phys. Lett. A 372(14), 2364–2367 (2008) ADSCrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    O’Hara, M.J., O’Leary, D.P.: Adiabatic theorem in the presence of noise. Phys. Rev. A 77(4), 042319 (2008) ADSCrossRefGoogle Scholar
  28. 28.
    Barthel, T., Kasztelan, C., McCulloch, I.P., et al.: Magnetism, coherent many-particle dynamics, and relaxation with ultracold bosons in optical superlattices. Phys. Rev. A 79(5), 053627 (2009) ADSCrossRefGoogle Scholar
  29. 29.
    Gu, S.J.: Fidelity susceptibility and quantum adiabatic condition in thermodynamic limits. Phys. Rev. E 79(6), 061125 (2009) ADSCrossRefGoogle Scholar
  30. 30.
    Duan, Q.H., Chen, P.X.: Realization of universal adiabatic quantum computation with fewer physical resources. Phys. Rev. A 84(4), 042332 (2011) ADSCrossRefGoogle Scholar
  31. 31.
    Guo, Z., Cao, H.: Time evolution and adiabatic approximation in PT-symmetric quantum mechanics. Preprint (2012). arXiv:1212.4615
  32. 32.
    Freedman, H.I., Lawson, J.D.: Systems with constant eigenvectors with applications to exact and numerical solutions of ordinary differential equations. Linear Algebra Appl. 8(4), 369–374 (1974) CrossRefzbMATHMathSciNetGoogle Scholar
  33. 33.
    Freedman, H.I.: Functionally commutative matrices and matrices with constant eigenvectors. Linear Multilinear Algebra 4(2), 107–113 (1976) CrossRefGoogle Scholar
  34. 34.
    Tong, D.M.: Quantitative condition is necessary in guaranteeing the validity of the adiabatic approximation. Phys. Rev. Lett. 104(12), 120401 (2010) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of PhysicsShandong UniversityJinanChina

Personalised recommendations