Skip to main content
Log in

An Arbitrated Quantum Signature with Bell States

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Entanglement is the main resource in quantum communication. The main aims of the arbitrated quantum signature (AQS) scheme are to present an application of the entanglement in cryptology and to prove the possibility of the quantum signature. More specifically, the main function of quantum entangled states in the existing AQS schemes is to assist the signatory to transfer quantum states to the receiver. However, teleportation and the Leung quantum one-time pad (L-QOTP) algorithm are not enough to design a secure AQS scheme. For example, Pauli operations commute or anticommute with each other, which makes the implementation of attacks easily from the aspects of forgery and disavowal. To conquer this shortcoming, we construct an improved AQS scheme using a new QOTP algorithm. This scheme has three advantages: it randomly uses the Hadamard operation in the new QOTP to resist attacks by using the anticommutativity of nontrivial Pauli operators and it preserves almost all merits in the existing AQS schemes; even in the process of handling disputes, no party has chance to change the message and its signature without being discovered; the receiver can verify the integrity of the signature and discover the disavow of the signatory even in the last step of verification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Gao, F., Qin, S.J., Guo, F.Z., et al.: Cryptanalysis of the arbitrated quantum signature protocols. Phys. Rev. A 84(2), 022344 (2011)

    Article  ADS  Google Scholar 

  2. Barnum, H., Crépeau, C., Gottesman, D., et al.: Authentication of quantum messages. In: Proceedings of the 43rd Annual IEEE Symposium on the Foundations of Computer Science, p. 449. IEEE Comput. Soc., Washington (2002). arXiv:quant-ph/0205128

    Google Scholar 

  3. Zeng, G.H., Keitel, C.H.: Arbitrated quantum-signature scheme. Phys. Rev. A 65(4), 042312 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  4. Zeng, G.H.: Reply to “Comment on ‘Arbitrated quantum-signature scheme’’’. Phys. Rev. A 78(1), 016301 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  5. Gao, F., Guo, F.Z., Wen, Q.Y., et al.: Comment on “Colloidal interactions and transport in nematic liquid crystals”. Phys. Rev. Lett. 101(2), 208901 (2008)

    Article  ADS  Google Scholar 

  6. Zhang, W.W., Zhang, K.J.: Cryptanalysis and improvement of the quantum private comparison protocol with semi-honest third party. Quantum Inf. Process. 12(5), 1981 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  7. Cai, Q.Y.: The “Ping-Pong” protocol can be attacked without eavesdropping. Phys. Rev. Lett. 91(10), 109801 (2003)

    Article  ADS  Google Scholar 

  8. Huang, W., Zuo, H.J., Li, Y.B.: Cryptanalysis and improvement of a multi-user quantum communication network using χ-type entangled states. Int. J. Theor. Phys. 52(4), 1354 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  9. Gisin, N., Fasel, S., Kraus, B., et al.: Trojan-horse attacks on quantum-key-distribution systems. Phys. Rev. A 73(2), 022320 (2006)

    Article  ADS  Google Scholar 

  10. Leung, D.W.: Quantum Vernam cipher. Quantum Inf. Comput. 2(1), 14 (2002)

    MathSciNet  Google Scholar 

  11. Li, Q., Chan, W.H., Long, D.Y.: Arbitrated quantum signature scheme using Bell states. Phys. Rev. A 79(5), 054307 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  12. Zou, X.F., Qiu, D.W.: Security analysis and improvements of arbitrated quantum signature schemes. Phys. Rev. A 82(4), 042325 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  13. Hwang, T., Luo, Y.P., Chong, S.K.: Comment on “Security analysis and improvements of arbitrated quantum signature schemes”. Phys. Rev. A 85(5), 056301 (2012)

    Article  ADS  Google Scholar 

  14. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, p. 175. IEEE, New York (1984)

    Google Scholar 

  15. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67(6), 661 (1991)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68(21), 3121 (1992)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. Pan, J.W., Bouwmeester, D., Weinfurter, H., et al.: Experimental entanglement swapping: entangling photons that never interacted. Phys. Rev. Lett. 80(18), 3891 (1998)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. Gao, F., Guo, F.Z., Wen, Q.Y., et al.: Quantum key distribution without alternative measurements and rotations. Phys. Lett. A 349(1–4), 53–58 (2006)

    Article  ADS  MATH  Google Scholar 

  19. Curty, M., Santos, D.J., Pérez, E., et al.: Qubit authentication. Phys. Rev. A 66(2), 022301 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  20. Buhrman, H., Cleve, R., Watrous, J., et al.: Quantum fingerprinting. Phys. Rev. Lett. 87(16), 167902 (2001)

    Article  ADS  Google Scholar 

  21. Abruzzo, S., Bratzik, S., Bernardes, N.K., et al.: Quantum repeaters and quantum key distribution: analysis of secret-key rates. Phys. Rev. A 87(5), 052315 (2013)

    Article  ADS  Google Scholar 

  22. Choi, J.W., Chang, K.Y., Hong, D.: Security problem on arbitrated quantum signature schemes. Phys. Rev. A 84(6), 062330 (2011)

    Article  ADS  Google Scholar 

  23. Zhang, K.J., Zhang, W.W., Li, D.: Improving the security of arbitrated quantum signature against the forgery attack. Quantum Inf. Process. 12(8), 2655 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by NSFC (Grant Nos. 61300181, 61272057, 61202434, 61170270, 61100203, 61121061), Beijing Natural Science Foundation (Grant No. 4122054), Beijing Higher Education Young Elite Teacher Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Su-Juan Qin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, F., Qin, SJ. & Huang, W. An Arbitrated Quantum Signature with Bell States. Int J Theor Phys 53, 1569–1579 (2014). https://doi.org/10.1007/s10773-013-1955-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-013-1955-y

Keywords

Navigation