Advertisement

International Journal of Theoretical Physics

, Volume 53, Issue 5, pp 1435–1440 | Cite as

Quasinormal Modes of Spherical Symmetrical Black Hole with x-Matter

  • ShuZheng Yang
  • Kai Lin
Article
  • 109 Downloads

Abstract

In this paper, we use expansion method with eikonal limit to calculate the scalar and Dirac quasinormal modes of black hole with x-matter, which is a spherical symmetrical vacuum black hole in a brane-world scenario. The spacetime includes x-matter as the dark energy. From the results, we find the x-matter accelerates quasinormal frequency and slows damping rate of amplitude.

Keywords

Quasinormal modes Black Hole with x-matter Dark energy Expansion method 

Notes

Acknowledgements

This work is supported by National Natural Science Foundation of China (No. 11178018).

References

  1. 1.
    Schutz, B.F., Will, C.M.: Astron. J. 291, L33 (1985) ADSCrossRefGoogle Scholar
  2. 2.
    Iyer, S., Will, C.M.: Phys. Rev. D 15, 3621 (1987) ADSCrossRefGoogle Scholar
  3. 3.
    Konoplya, R.A.: Phys. Rev. D 68, 024018 (2003). arXiv:gr-qc/0303052 ADSCrossRefGoogle Scholar
  4. 4.
    Zhidenko, A.: Class. Quantum Gravity 21, 273 (2004). arXiv:gr-qc/0307012v4 ADSCrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Fernando, S.: Int. J. Mod. Phys. A 25, 669–684 (2010). arXiv:hep-th/0502239v5 ADSCrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Lpez-Ortega, A.: Gen. Relativ. Gravit. 40, 1379–1401 (2008). arXiv:0706.2933v1 ADSCrossRefGoogle Scholar
  7. 7.
    Lin, K., Li, J., Yang, N.: Gen. Relativ. Gravit. 43, 1889–1899 (2011) ADSCrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Gleiser, R.J., Dotti, G.: Phys. Rev. D 72, 124002 (2005) ADSCrossRefMathSciNetGoogle Scholar
  9. 9.
    Cho, H.T., et al.: Class. Quantum Gravity 27, 155004 (2010). arXiv:0912.2740 ADSCrossRefGoogle Scholar
  10. 10.
    Cho, H.T., et al.: arXiv:1111.5024 (2013)
  11. 11.
    Cho, H.T., et al.: Phys. Rev. D 83, 124034 (2011). arXiv:1104.1281v2 ADSCrossRefGoogle Scholar
  12. 12.
    Lin, K., et al.: Int. J. Theor. Phys. 52, 1370–1378 (2013) CrossRefzbMATHGoogle Scholar
  13. 13.
    Mashhoon, B.: Phys. Rev. D 31, 290 (1985) ADSCrossRefMathSciNetGoogle Scholar
  14. 14.
    Ferrari, V., Mashhoon, B.: Phys. Rev. D 30, 295 (1984) ADSCrossRefMathSciNetGoogle Scholar
  15. 15.
    Cardoso, V., Miranda, A.S., Berti, E., Witeck, H., Zanchin, V.T.: Phys. Rev. D 79, 064016 (2009) ADSCrossRefMathSciNetGoogle Scholar
  16. 16.
    Dolan, S.R.: Phys. Rev. D 82, 104003 (2010) ADSCrossRefGoogle Scholar
  17. 17.
    Dolan, S.R., Ottewill, A.C.: Class. Quantum Gravity 26, 225003 (2009) ADSCrossRefMathSciNetGoogle Scholar
  18. 18.
    Dolan, S.R., Ottewill, A.C.: Phys. Rev. D 84, 104002 (2011) ADSCrossRefGoogle Scholar
  19. 19.
    Heydari-Fard, M., Razmi, H., Sepangi, H.R.: Phys. Rev. D 76, 066002 (2007). arXiv:0707.3558 ADSCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Institute of Theoretical PhysicsChina West Normal UniversityNanchongChina
  2. 2.Department of PhysicsUniversity of Electronic Science and Technology of ChinaChengduChina

Personalised recommendations