Skip to main content
Log in

Anisotropic Dark Energy Bianchi Type-II Cosmological Models in Lyra Geometry

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The spatially homogeneous and totally anisotropic Bianchi type-II cosmological model has been discussed in general relativity in the presence of a hypothetical anisotropic dark energy fluid with constant deceleration parameter within the frame work of Lyra’s manifold with uniform and time varying displacement field vector. With the help of special law of variation for Hubble’s parameter proposed by Bermann (Nuovo Cimento 74B:182, 1983) a dark energy cosmological model is obtained in this theory. We use the power law relation between average Hubble parameter H and average scale factor R to find the solution. The assumption of constant deceleration parameter leads to two models of universe, i.e. power law model and exponential model. Some physical and kinematical properties of the model are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lima, J.A.S.: Phys. Rev. D 4, 2571 (1996)

    Article  ADS  Google Scholar 

  2. Perlmutter, S.: Astrophys. J. 517, 565 (1999)

    Article  ADS  Google Scholar 

  3. Reiss, A.G.: Astrophys. J. 116, 1009 (1998)

    Google Scholar 

  4. Bernardis, P.: Nature 404, 955 (2000)

    Article  ADS  Google Scholar 

  5. Spergel, D.N.: Astrophys. J. Suppl. Ser. 170, 377 (2007)

    Article  ADS  Google Scholar 

  6. Caldwell, R., Kamionkowski, M.: Annu. Rev. Nucl. Part. Sci. 59, 397 (2009)

    Article  ADS  Google Scholar 

  7. Peebles, P.J.E., Rathra, B.: Rev. Mod. Phys. 75, 559 (2003)

    Article  MATH  ADS  Google Scholar 

  8. Padmanabhan, T.: Phys. Rep. 380, 235 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. Tortora, E., Demianski, M.: Astron. Astrophys. 431, 27 (2005)

    Article  MATH  ADS  Google Scholar 

  10. Cardone, V.F.: Astron. Astrophys. 429, 49 (2005)

    Article  ADS  Google Scholar 

  11. Caldewell, R.R.: Phys. Lett. B 545, 23 (2002)

    Article  ADS  Google Scholar 

  12. Peebles, P.J.E., Rathra, B.: Astrophys. J. 325, 17 (1998)

    Article  Google Scholar 

  13. Rathra, B., Peebles, P.J.E.: Phys. Rev. D 37, 3406 (1998)

    Article  ADS  Google Scholar 

  14. Sahni, V., Starobinsky, A.A.: Int. J. Mod. Phys. D 9, 373 (2000)

    ADS  Google Scholar 

  15. Ma, Y.Z.: Nucl. Phys. B 804, 262 (2008)

    Article  ADS  Google Scholar 

  16. Lima, J.A.S.: Mon. Not. R. Astron. Soc. 312, 747 (2000)

    Article  ADS  Google Scholar 

  17. Lima, J.A.S., Alcaniz, J.S.: Astron. Astrophys. 348, 1 (1999)

    ADS  Google Scholar 

  18. Koivisto, T., Mota, D.F.: Astrophys. J. 679, 1 (2008)

    Article  ADS  Google Scholar 

  19. Saha, B.: Chin. J. Phys. 43, 1035 (2005)

    Google Scholar 

  20. Singh, T., Chubey, R.: Astrophys. Space Sci. 321, 5 (2009)

    Article  ADS  Google Scholar 

  21. Akarsu, O., Kiline, C.B.: Gen. Relativ. Gravit. 42, 763 (2010)

    Article  MATH  ADS  Google Scholar 

  22. Lyra, G.: Math. Z. 54, 52 (1951)

    Article  MATH  MathSciNet  Google Scholar 

  23. Weyl, H.: Math. Z. 2, 384 (1918)

    Article  MATH  MathSciNet  Google Scholar 

  24. Sen, D.K.: Z. Phys. Hadrons Nucl. 149, 311 (1957)

    MATH  Google Scholar 

  25. Sen, D.K., Dunn, K.A.: J. Math. Phys. 12, 578 (1971)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  26. Halford, W.D.: J. Math. Phys. 13, 1399 (1972)

    Article  Google Scholar 

  27. Berman, M.S., Gomide, F.: Gen. Relativ. Gravit. 20, 191 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  28. Halford, W.D.: Aust. J. Phys. 23, 863 (1970)

    Article  ADS  Google Scholar 

  29. Sen, D.K., Vanstone, J.R.: J. Math. Phys. 13, 990 (1972)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  30. Sharma, K.S.: Aust. J. Phys. 27, 541 (1974)

    Article  ADS  Google Scholar 

  31. Karade, T.M., Borikar, S.M.: Gen. Relativ. Gravit. 9, 431 (1978)

    Article  MathSciNet  ADS  Google Scholar 

  32. Reddy, D.R.K., Venkateswarlu, R.: Astron. Astrophys. 136, 191 (1987)

    MathSciNet  Google Scholar 

  33. Soleng, H.: Gen. Relativ. Gravit. 19, 1213 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  34. Singh, T., Singh, G.P.: J. Math. Phys. 32, 2456 (1991)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  35. Singh, G.P., Desikan, K.: Pramana J. Phys. 49, 205 (1997)

    Article  ADS  Google Scholar 

  36. Rahaman, F.: Astrophys. Space Sci. 281, 595 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  37. Rahaman, F., Begum, N., Bhui, B.C.: Astrophys. Space Sci. 299, 211 (2005)

    Article  ADS  Google Scholar 

  38. Pradhan, A., Yadav, V.K., Chakrabarty, I.: Int. J. Mod. Phys. 10, 339 (2001)

    Article  ADS  Google Scholar 

  39. Singh, J.K., Ram, S.: Nuovo Cimento 112B, 1157 (1997)

    ADS  Google Scholar 

  40. Singh, J.K.: Int. J. Mod. Phys. A 23, 30 (2008)

    Google Scholar 

  41. Singh, J.K.: Int. J. Theor. Phys. 48, 905 (2009)

    Article  MATH  ADS  Google Scholar 

  42. Singh, J.K., Sharma, N.K.: Int. J. Mod. Phys. A 25, 2533 (2010)

    MathSciNet  ADS  Google Scholar 

  43. Bermann, M.S.: Nuovo Cimento 74B, 182 (1983)

    Article  ADS  Google Scholar 

  44. Throne, K.S.: Astrophys. J. 148, 503 (1967)

    Google Scholar 

Download references

Acknowledgements

The authors express his thanks to Prof. Raj Senani, Director, NSIT, and Prof. Vijay Gupta, Head, School of Applied Sciences, NSIT, India for their continuing encouragement and providing necessary facilities during the work. The authors also express his thanks to the referee for valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. K. Sharma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, J.K., Sharma, N.K. Anisotropic Dark Energy Bianchi Type-II Cosmological Models in Lyra Geometry. Int J Theor Phys 53, 1375–1386 (2014). https://doi.org/10.1007/s10773-013-1934-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-013-1934-3

Keywords

Navigation