Advertisement

International Journal of Theoretical Physics

, Volume 53, Issue 4, pp 1375–1386 | Cite as

Anisotropic Dark Energy Bianchi Type-II Cosmological Models in Lyra Geometry

  • J. K. Singh
  • N. K. Sharma
Article

Abstract

The spatially homogeneous and totally anisotropic Bianchi type-II cosmological model has been discussed in general relativity in the presence of a hypothetical anisotropic dark energy fluid with constant deceleration parameter within the frame work of Lyra’s manifold with uniform and time varying displacement field vector. With the help of special law of variation for Hubble’s parameter proposed by Bermann (Nuovo Cimento 74B:182, 1983) a dark energy cosmological model is obtained in this theory. We use the power law relation between average Hubble parameter H and average scale factor R to find the solution. The assumption of constant deceleration parameter leads to two models of universe, i.e. power law model and exponential model. Some physical and kinematical properties of the model are also discussed.

Keywords

Bianchi type-II space time Anisotropic dark energy Lyra’s geometry 

Notes

Acknowledgements

The authors express his thanks to Prof. Raj Senani, Director, NSIT, and Prof. Vijay Gupta, Head, School of Applied Sciences, NSIT, India for their continuing encouragement and providing necessary facilities during the work. The authors also express his thanks to the referee for valuable suggestions.

References

  1. 1.
    Lima, J.A.S.: Phys. Rev. D 4, 2571 (1996) CrossRefADSGoogle Scholar
  2. 2.
    Perlmutter, S.: Astrophys. J. 517, 565 (1999) CrossRefADSGoogle Scholar
  3. 3.
    Reiss, A.G.: Astrophys. J. 116, 1009 (1998) Google Scholar
  4. 4.
    Bernardis, P.: Nature 404, 955 (2000) CrossRefADSGoogle Scholar
  5. 5.
    Spergel, D.N.: Astrophys. J. Suppl. Ser. 170, 377 (2007) CrossRefADSGoogle Scholar
  6. 6.
    Caldwell, R., Kamionkowski, M.: Annu. Rev. Nucl. Part. Sci. 59, 397 (2009) CrossRefADSGoogle Scholar
  7. 7.
    Peebles, P.J.E., Rathra, B.: Rev. Mod. Phys. 75, 559 (2003) CrossRefMATHADSGoogle Scholar
  8. 8.
    Padmanabhan, T.: Phys. Rep. 380, 235 (2003) CrossRefMATHMathSciNetADSGoogle Scholar
  9. 9.
    Tortora, E., Demianski, M.: Astron. Astrophys. 431, 27 (2005) CrossRefMATHADSGoogle Scholar
  10. 10.
    Cardone, V.F.: Astron. Astrophys. 429, 49 (2005) CrossRefADSGoogle Scholar
  11. 11.
    Caldewell, R.R.: Phys. Lett. B 545, 23 (2002) CrossRefADSGoogle Scholar
  12. 12.
    Peebles, P.J.E., Rathra, B.: Astrophys. J. 325, 17 (1998) CrossRefGoogle Scholar
  13. 13.
    Rathra, B., Peebles, P.J.E.: Phys. Rev. D 37, 3406 (1998) CrossRefADSGoogle Scholar
  14. 14.
    Sahni, V., Starobinsky, A.A.: Int. J. Mod. Phys. D 9, 373 (2000) ADSGoogle Scholar
  15. 15.
    Ma, Y.Z.: Nucl. Phys. B 804, 262 (2008) CrossRefADSGoogle Scholar
  16. 16.
    Lima, J.A.S.: Mon. Not. R. Astron. Soc. 312, 747 (2000) CrossRefADSGoogle Scholar
  17. 17.
    Lima, J.A.S., Alcaniz, J.S.: Astron. Astrophys. 348, 1 (1999) ADSGoogle Scholar
  18. 18.
    Koivisto, T., Mota, D.F.: Astrophys. J. 679, 1 (2008) CrossRefADSGoogle Scholar
  19. 19.
    Saha, B.: Chin. J. Phys. 43, 1035 (2005) Google Scholar
  20. 20.
    Singh, T., Chubey, R.: Astrophys. Space Sci. 321, 5 (2009) CrossRefADSGoogle Scholar
  21. 21.
    Akarsu, O., Kiline, C.B.: Gen. Relativ. Gravit. 42, 763 (2010) CrossRefMATHADSGoogle Scholar
  22. 22.
    Lyra, G.: Math. Z. 54, 52 (1951) CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Weyl, H.: Math. Z. 2, 384 (1918) CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    Sen, D.K.: Z. Phys. Hadrons Nucl. 149, 311 (1957) MATHGoogle Scholar
  25. 25.
    Sen, D.K., Dunn, K.A.: J. Math. Phys. 12, 578 (1971) CrossRefMATHMathSciNetADSGoogle Scholar
  26. 26.
    Halford, W.D.: J. Math. Phys. 13, 1399 (1972) CrossRefGoogle Scholar
  27. 27.
    Berman, M.S., Gomide, F.: Gen. Relativ. Gravit. 20, 191 (1988) CrossRefMathSciNetADSGoogle Scholar
  28. 28.
    Halford, W.D.: Aust. J. Phys. 23, 863 (1970) CrossRefADSGoogle Scholar
  29. 29.
    Sen, D.K., Vanstone, J.R.: J. Math. Phys. 13, 990 (1972) CrossRefMATHMathSciNetADSGoogle Scholar
  30. 30.
    Sharma, K.S.: Aust. J. Phys. 27, 541 (1974) CrossRefADSGoogle Scholar
  31. 31.
    Karade, T.M., Borikar, S.M.: Gen. Relativ. Gravit. 9, 431 (1978) CrossRefMathSciNetADSGoogle Scholar
  32. 32.
    Reddy, D.R.K., Venkateswarlu, R.: Astron. Astrophys. 136, 191 (1987) MathSciNetGoogle Scholar
  33. 33.
    Soleng, H.: Gen. Relativ. Gravit. 19, 1213 (1987) CrossRefMathSciNetADSGoogle Scholar
  34. 34.
    Singh, T., Singh, G.P.: J. Math. Phys. 32, 2456 (1991) CrossRefMATHMathSciNetADSGoogle Scholar
  35. 35.
    Singh, G.P., Desikan, K.: Pramana J. Phys. 49, 205 (1997) CrossRefADSGoogle Scholar
  36. 36.
    Rahaman, F.: Astrophys. Space Sci. 281, 595 (2002) CrossRefMATHMathSciNetADSGoogle Scholar
  37. 37.
    Rahaman, F., Begum, N., Bhui, B.C.: Astrophys. Space Sci. 299, 211 (2005) CrossRefADSGoogle Scholar
  38. 38.
    Pradhan, A., Yadav, V.K., Chakrabarty, I.: Int. J. Mod. Phys. 10, 339 (2001) CrossRefADSGoogle Scholar
  39. 39.
    Singh, J.K., Ram, S.: Nuovo Cimento 112B, 1157 (1997) ADSGoogle Scholar
  40. 40.
    Singh, J.K.: Int. J. Mod. Phys. A 23, 30 (2008) Google Scholar
  41. 41.
    Singh, J.K.: Int. J. Theor. Phys. 48, 905 (2009) CrossRefMATHADSGoogle Scholar
  42. 42.
    Singh, J.K., Sharma, N.K.: Int. J. Mod. Phys. A 25, 2533 (2010) MathSciNetADSGoogle Scholar
  43. 43.
    Bermann, M.S.: Nuovo Cimento 74B, 182 (1983) CrossRefADSGoogle Scholar
  44. 44.
    Throne, K.S.: Astrophys. J. 148, 503 (1967) Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.School of Applied Sciences, Netaji Subhash Institute of TechnologyUniversity of DelhiDwarkaIndia

Personalised recommendations