Advertisement

International Journal of Theoretical Physics

, Volume 53, Issue 3, pp 993–1002 | Cite as

An Exact Solution of Perfect Fluid in Isotropic Coordinates, Compatible with Relativistic Modeling of Star

  • Neeraj Pant
  • Pratibha Fuloria
  • N. Pradhan
Article

Abstract

We present a spherically symmetric solution of the general relativistic field equations in isotropic coordinates for perfect fluid, compatible with a super dense star modeling. The solution is well behaved for all the values of u lying in the range 0<u≤0.12. Further, we have constructed a super-dense star model with all degree of suitability and by assuming the surface density ρ b =2×1014 g/cm3. Corresponding to u=0.12, the resulting well behaved model has maximum mass M=0.912M Θ with radius R b ≈11.27 km and Moment of inertia 0.97×1045 gm cm2. The good matching of our results for Vela pulsars show the stoutness of our model.

Keywords

Isotropic coordinates General Relativity Einstein’s field equations Fluid ball 

Notes

Acknowledgement

One of us (Neeraj Pant) is grateful to Air Marshal K.S. Gill AVSM YSM VM, the Commandant NDA Khadakwasla Pune for his motivation and encouragement. We are grateful to the anonymous referees for making constructive and relevant suggestions.

References

  1. 1.
    Delgaty, M.S.R., Lake, K.: Comput. Phys. Commun. 115, 395 (1998) ADSCrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Tolman, R.C.: Phys. Rev. 55, 364 (1939) ADSCrossRefGoogle Scholar
  3. 3.
    Adler, R.J.: J. Math. Phys. 15, 727 (1974) ADSCrossRefGoogle Scholar
  4. 4.
    Heintzmann, H.: Z. Phys. 228, 489 (1969) ADSCrossRefMathSciNetGoogle Scholar
  5. 5.
    Finch, N.R., Skea, J.E.F.: Class. Quantum Gravity 6, 467 (1989) ADSCrossRefMathSciNetGoogle Scholar
  6. 6.
    Patwardhan, G.K., Vaidya, P.C.: J. Univ. Bombay 12, 23 (1943). Part III MATHMathSciNetGoogle Scholar
  7. 7.
    Mehra, A.L.: J. Aust. Math. Soc. 6, 153 (1966) CrossRefMATHGoogle Scholar
  8. 8.
    Kuchowicz, B.: Acta Phys. Pol. 34, 131 (1968) Google Scholar
  9. 9.
    Matese, J.J., Whitman, P.G.: Phys. Rev. D 22, 1270 (1980) ADSCrossRefMathSciNetGoogle Scholar
  10. 10.
    Durgapal, M.C.: J. Phys. A, Math. Gen. 15, 2637 (1982) ADSCrossRefMathSciNetGoogle Scholar
  11. 11.
    Nariai, S.: Sci. Rep. Tohoku Univ., Ser. 1 34, 160 (1950) MathSciNetGoogle Scholar
  12. 12.
    Goldman, S.P.: Astrophys. J. 226, 1079 (1978) ADSCrossRefMathSciNetGoogle Scholar
  13. 13.
    Pant, N.: Astrophys. Space Sci. 331, 633 (2011) ADSCrossRefMATHGoogle Scholar
  14. 14.
    Maurya, S.K., Gupta, K.: Astrophys. Space Sci. (2011). doi: 10.1007s10509-011-0705-y Google Scholar
  15. 15.
    Pant, N., et al.: Astrophys. Space Sci. 330, 353 (2010) ADSCrossRefMATHGoogle Scholar
  16. 16.
    Pant, N., et al.: Astrophys. Space Sci. 340, 407 (2012) ADSCrossRefGoogle Scholar
  17. 17.
    Ivanov, B.V.: Gen. Relativ. Gravit. 44, 1835 (2012) ADSCrossRefMATHGoogle Scholar
  18. 18.
    Kramer, D.: J. Math. Phys. 33, 1458 (1992) ADSCrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Banerjee, A., Chatterjee, S., Dadhich, N.: Mod. Phys. Lett. A 35, 2335 (2002) ADSCrossRefGoogle Scholar
  20. 20.
    Tewari, B.C.: Astrophys. Space Sci. 342, 73 (2012) ADSCrossRefGoogle Scholar
  21. 21.
    Pant, N., Negi, P.S.: Astrophys. Space Sci. 338, 163 (2012) ADSCrossRefGoogle Scholar
  22. 22.
    Canuto, V., Lodenquai, J.: Phys. Rev. C 12, 2033 (1975) ADSCrossRefGoogle Scholar
  23. 23.
    Pant, N., et al.: Appl. Math. Comput. 218, 8260 (2012). doi: 10.1016/j.amc.2012.01.044 CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    Hajj Boutros, J.: J. Math. Phys. 27, 1363 (1986) ADSCrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    Bejger, M., Haensel, P.: Astron. Astrophys. 396, 917 (2002) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Mathematics DepartmentNational Defence AcademyPuneIndia
  2. 2.Physics DepartmentAlmoraIndia
  3. 3.Physics DepartmentNational Defence AcademyPuneIndia

Personalised recommendations