Advertisement

International Journal of Theoretical Physics

, Volume 53, Issue 1, pp 277–288 | Cite as

Security Weaknesses in Arbitrated Quantum Signature Protocols

  • Feng Liu
  • Kejia Zhang
  • Tianqing Cao
Article

Abstract

Arbitrated quantum signature (AQS) is a cryptographic scenario in which the sender (signer), Alice, generates the signature of a message and then a receiver (verifier), Bob, can verify the signature with the help of a trusted arbitrator, Trent. In this paper, we point out there exist some security weaknesses in two AQS protocols. Our analysis shows Alice can successfully disavow any of her signatures by a simple attack in the first protocol. Furthermore, we study the security weaknesses of the second protocol from the aspects of forgery and disavowal. Some potential improvements of this kind of protocols are given. We also design a new method to authenticate a signature or a message, which makes AQS protocols immune to Alice’s disavowal attack and Bob’s forgery attack effectively.

Keywords

Quantum signature Arbitrated quantum signature Security analysis 

Notes

Acknowledgements

This work is supported by NSFC (Grant Nos. 61272057, 61202434, 61170270, 61100203, 61003286, 61121061), NCET (Grant No. NCET-10-0260), Beijing Natural Science Foundation (Grant Nos. 4112040, 4122054), the Fundamental Research Funds for the Central Universities (Grant No. 2012RC0612, 2011YB01).

References

  1. 1.
    Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484 (1997) CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Gottesman, D., Chuang, I.L.: Quantum digital signatures. e-Print arXiv:quant-ph/0105032
  3. 3.
    Zeng, G.H., Keitel, C.H.: Arbitrated quantum-signature scheme. Phys. Rev. A 65(4), 042312 (2002) ADSCrossRefMathSciNetGoogle Scholar
  4. 4.
    Zeng, G.H.: Reply to “Comment on ‘Arbitrated quantum-signature scheme’’’. Phys. Rev. A 78(1), 016301 (2008) ADSCrossRefMathSciNetGoogle Scholar
  5. 5.
    Li, Q., Chan, W.H., Long, D.Y.: Arbitrated quantum signature scheme using Bell states. Phys. Rev. A 79(5), 054307 (2009) ADSCrossRefMathSciNetGoogle Scholar
  6. 6.
    Zou, X.F., Qiu, D.W.: Security analysis and improvements of arbitrated quantum signature schemes. Phys. Rev. A 82(4), 042325 (2010) ADSCrossRefMathSciNetGoogle Scholar
  7. 7.
    Gao, F., Qin, S.J., Guo, F.Z., et al.: Cryptanalysis of the arbitrated quantum signature protocols. Phys. Rev. A 84(2), 022344 (2011) ADSCrossRefGoogle Scholar
  8. 8.
    Barnum, H., Crépeau, C., Gottesman, D., et al.: Authentication of quantum messages. In: Proceedings of the 43rd Annual IEEE Symposium on the Foundations of Computer Science, p. 449. IEEE Computer Society Press, Washington (2002). e-Print arXiv:quant-ph/0205128 Google Scholar
  9. 9.
    Barnum, H.: Quantum message authentication codes. e-Print arXiv:quant-ph/0103123
  10. 10.
    Li, Q., Li, C.Q., Long, D.Y., et al.: Efficient arbitrated quantum signature and its proof of security. Quantum Inf. Process. 12(7), 2427 (2013) ADSCrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Li, Q., Du, R.G., Long, D.Y., et al.: Entanglement enhances the security of arbitrated quantum signature. Int. J. Quantum Inf. 7(5), 913 (2009) CrossRefMATHGoogle Scholar
  12. 12.
    Gao, F., Qin, S.J., Guo, F.Z., et al.: Dense-coding attack on three-party quantum key distribution protocols. IEEE J. Quantum Electron. 47(5), 630 (2011) ADSCrossRefGoogle Scholar
  13. 13.
    Qin, S.J., Gao, F., Wen, Q.Y., et al.: Improving the security of multiparty quantum secret sharing against an attack with a fake signal. Phys. Lett. A 357(2), 101 (2006) ADSCrossRefMATHGoogle Scholar
  14. 14.
    Cai, Q.Y.: The “Ping-Pong” protocol can be attacked without eavesdropping. Phys. Rev. Lett. 91(10), 109801 (2003) ADSCrossRefGoogle Scholar
  15. 15.
    Gao, F., Guo, F.Z., Wen, Q.Y., et al.: Consistency of shared reference frames should be reexamined. Phys. Rev. A 77(1), 014302 (2008) ADSCrossRefGoogle Scholar
  16. 16.
    Gao, F., Wen, Q.Y., Zhu, F.C.: Comment on: “Quantum exam”. Phys. Lett. A 350(6), 174 (2006). Phys. Lett. A, 360, 748, 2007 Google Scholar
  17. 17.
    Gao, F., Lin, S., Wen, Q.Y., et al.: A special eavesdropping on one-sender versus N-receiver QSDC protocol. Chin. Phys. Lett. 25(5), 1561 (2008) ADSCrossRefGoogle Scholar
  18. 18.
    Gao, F., Qin, S.J., Wen, Q.Y., et al.: Cryptanalysis of multiparty controlled quantum secure direct communication using Greenberger-Horne-Zeilinger state. Opt. Commun. 283(1), 192 (2010) ADSCrossRefGoogle Scholar
  19. 19.
    Huang, W., Zuo, H.J., Li, Y.B.: Cryptanalysis and improvement of a multi-user quantum communication network using χ-type entangled states. Int. J. Theor. Phys. 52(4), 1354–1361 (2013) CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Gao, F., Wen, Q.Y., Zhu, F.C.: Teleportation attack on the QSDC protocol with a random basis and order. Chin. Phys. B 17(9), 3189 (2008) ADSCrossRefGoogle Scholar
  21. 21.
    Gao, F., Guo, F.Z., Wen, Q.Y., et al.: Comment on “Colloidal interactions and transport in nematic liquid crystals”. Phys. Rev. Lett. 101(2), 208901 (2008) ADSCrossRefGoogle Scholar
  22. 22.
    Gao, F., Qin, S.J., Wen, Q.Y., et al.: A simple participant attack on the Bradler-Dusek protocol. Quantum Inf. Comput. 7(4), 329 (2007) MATHMathSciNetGoogle Scholar
  23. 23.
    Deng, F.G., Li, X.H., Zhou, H.Y., et al.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72(4), 044302 (2005) ADSCrossRefMathSciNetGoogle Scholar
  24. 24.
    Choi, J.W., Chang, K.Y., Hong, D.: Security problem on arbitrated quantum signature schemes. Phys. Rev. A 84(6), 062330 (2011) ADSCrossRefGoogle Scholar
  25. 25.
    Hwang, T., Luo, Y.P., Chong, S.K.: Comment on “Security analysis and improvements of arbitrated quantum signature schemes”. Phys. Rev. A 85(5), 056301 (2012) ADSCrossRefGoogle Scholar
  26. 26.
    Sun, Z.W., Du, R.G., Wang, B.H., et al.: Improvements on the security of arbitrated quantum signature protocols. e-Print arXiv:quant-ph/1107.2459v3
  27. 27.
    Li, Q., Li, C.Q., Wen, Z.H., et al.: On the security of arbitrated quantum signature schemes. e-print arXiv:quant-ph/1205.3265v1
  28. 28.
    Qin, S.J., Gao, F., Wen, Q.Y., et al.: Cryptanalysis of the Hillery-Buzek-Berthiaume quantum secret sharing protocol. Phys. Rev. A 76(6), 062324 (2007) ADSCrossRefGoogle Scholar
  29. 29.
    Guo, F.Z., Qin, S.J., Gao, F., et al.: Participant attack on a kind of MQSS schemes based on entanglement swapping. Eur. Phys. J. D 56(3), 445 (2010) ADSCrossRefMathSciNetGoogle Scholar
  30. 30.
    Wang, T.Y., Wen, Q.Y., Zhu, F.C.: Cryptanalysis of multiparty quantum secret sharing with Bell states and Bell measurements. Opt. Commun. 284(6), 1711 (2011) ADSCrossRefMathSciNetGoogle Scholar
  31. 31.
    Wang, T.Y., Wen, Q.Y.: Security of a kind of quantum secret sharing with single photons. Quantum Inf. Comput. 11(5–6), 434 (2011) MATHMathSciNetGoogle Scholar
  32. 32.
    Wang, T.Y., Li, Y.P.: Cryptanalysis of dynamic quantum secret sharing. Quantum Inf. Process. 12(5), 1991 (2013) ADSCrossRefMathSciNetGoogle Scholar
  33. 33.
    Leung, D.W.: Quantum Vernam cipher. Quantum Inf. Comput. 2(1), 14 (2002) MathSciNetGoogle Scholar
  34. 34.
    Buhrman, H., Cleve, R., Watrous, J., et al.: Quantum fingerprinting. Phys. Rev. Lett. 87(16), 167902 (2001) ADSCrossRefGoogle Scholar
  35. 35.
    Goldwasser, S., Micali, S., Rivest, R.: A digital signature scheme secure against adaptive chosen-message attack. SIAM J. Comput. 17(2), 281 (1988) CrossRefMATHMathSciNetGoogle Scholar
  36. 36.
    Zhang, K.J., Zhang, W.W., Li, D.: Improving the security of arbitrated quantum signature against the forgery attack. Quantum Inf. Process. 12(8), 2655 (2013) ADSCrossRefMathSciNetGoogle Scholar
  37. 37.
    Reyzin, L., Reyzin, N.: Better than BiBa: short one-time signatures with fast signing and verifying. e-Print archive http://eprint.iacr.org/2002/014

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.State Key Laboratory of Networking and Switching TechnologyBeijing University of Posts and TelecommunicationsBeijingChina
  2. 2.School of Mathematics and Statistics ScienceLudong UniversityYantaiChina

Personalised recommendations