Advertisement

International Journal of Theoretical Physics

, Volume 53, Issue 1, pp 10–16 | Cite as

The Stability of Holographic Dark Energy in Non-flat Universe

  • P. Huang
  • Y. C. Huang
Article
  • 106 Downloads

Abstract

The stability of holographic dark energy with a non-flat background is investigated. By treating the perturbation globally, we find that the holographic dark energy model is stable, which is a support for the holographic dark energy model.

Keywords

Holography principle Dark energy Stability Cosmology 

Notes

Acknowledgement

The work is partly supported by the National Natural Science Foundation of China (Nos. 11275017 and 11173028).

References

  1. 1.
    Weinberg, S.: Rev. Mod. Phys. 61, 1 (1989) ADSCrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Riess, A.G., et al. (Supernova Search team Collaboration): Astron. J. 116, 1009 (1998) ADSCrossRefGoogle Scholar
  3. 3.
    Bennett, C.L., et al. (WMAP Collaboration): Astrophys. J. Suppl. Ser. 148, 1 (2003) ADSCrossRefGoogle Scholar
  4. 4.
    Tegmark, M., et al. (SDSS Collaboration): Phys. Rev. D 69, 103501 (2004) ADSCrossRefGoogle Scholar
  5. 5.
    Cohen, A.G., Kaplan, D.B., Nelson, A.E.: Phys. Rev. Lett. 82, 4971 (1999) ADSCrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Horava, P., Minic, D.: Phys. Rev. Lett. 85, 1610 (2000) ADSCrossRefMathSciNetGoogle Scholar
  7. 7.
    Hsu, S.D.H.: Phys. Lett. B 594, 13–16 (2004) ADSCrossRefGoogle Scholar
  8. 8.
    Li, M.: Phys. Lett. B 1, 603 (2004) Google Scholar
  9. 9.
    Huang, Q.G., Li, M.: J. Cosmol. Astropart. Phys. 2004(08), 013 (2004) CrossRefGoogle Scholar
  10. 10.
    Li, M., Li, X.D., Ma, Y.Z., Zhang, X., Zhang, Z.: Planck constraints on holographic dark energy. arXiv:1305.5302 [astro-ph.CO]
  11. 11.
    Li, Y.H., Wang, S., Li, X.D., Zhang, X.: J. Cosmol. Astropart. Phys. 2013(02), 033 (2013) CrossRefGoogle Scholar
  12. 12.
    Myung, Y.S.: Phys. Lett. B 652, 223 (2007) ADSCrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Li, M., Lin, C., Wang, Y.: J. Cosmol. Astropart. Phys. 2008(05), 023 (2008) CrossRefMathSciNetGoogle Scholar
  14. 14.
    Huang, P., Huang, Y.-c.: Eur. Phys. J. C 73, 2366 (2013) ADSCrossRefGoogle Scholar
  15. 15.
    Hinshaw, G., Larson, D., Komatsu, E., et al.: (2012). arXiv:1212.5226 [astro-ph.CO]
  16. 16.
    Mukhanov, V.F., Feldman, H.A., Brandenberger, R.H.: Theory of Cosmological Perturbations (1992) Google Scholar
  17. 17.
    Bamba, K., Odintsov, S.D., Sebastiani, L., Zerbini, S.: Eur. Phys. J. C 67, 295–310 (2010) ADSCrossRefGoogle Scholar
  18. 18.
    Peacock, J.A.: Cosmological Physics. Cambridge University Press, Cambridge (1999) MATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Institute of Theoretical PhysicsBeijing University of TechnologyBeijingChina
  2. 2.Kavli Institute for Theoretical PhysicsChinese Academy of SciencesBeijingChina
  3. 3.CCAST (World Lab.)BeijingChina

Personalised recommendations