Advertisement

International Journal of Theoretical Physics

, Volume 52, Issue 12, pp 4557–4561 | Cite as

Spectroscopy of the Reissner–Nordström–Anti-de Sitter Black Hole via Adiabatic Invariance

  • X. G. Lan
Article
  • 78 Downloads

Abstract

By combining the black hole property of adiabaticity and the oscillating velocity of the black hole horizon, we study the entropy and the area spectra of the Reissner–Nordström–anti-de Sitter black hole. Instead of using the quasi-normal mode frequencies, we utilize the oscillating velocity of the event horizon in the tunneling framework to obtain the black hole spectroscopy via adiabatic invariance. The results show that, both of the area spectrum and the entropy spectrum are equally spaced and independent on the parameters of the black hole.

Keywords

Entropy spectrum Reissner–Nordström–anti-de Sitter black hole Adiabatic invariance 

Notes

Acknowledgements

This work is partly supported by the Youth Foundation of Education Department of Sichuan Province Grant No. 11ZB032, the Key Projects Foundation of China West Normal University Grant No. 12A003, and the National Natural Science Foundation of China Grants Nos. 11204249 and 11147116.

References

  1. 1.
    Bekenstein, J.D.: Phys. Rev. D 7, 2333 (1973) MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    Lin, K., Yang, S.Z.: Chin. Phys. B 20, 110403 (2011) ADSCrossRefGoogle Scholar
  3. 3.
    Li, H.L., Yang, S.Z.: Europhys. Lett. 79, 20001 (2007) ADSCrossRefGoogle Scholar
  4. 4.
    Chen, D.Y., Yang, H.T.: Eur. Phys. J. C 72, 2027 (2012) ADSCrossRefGoogle Scholar
  5. 5.
    Li, H.L., Yang, S.Z., Jiang, Q.Q.: Commun. Theor. Phys. 44, 955 (2005) MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    Lin, K., Chen, S.W., Yang, S.Z.: Int. J. Theor. Phys. 47, 2453 (2008) MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Chen, D.Y.: Int. J. Theor. Phys. 52, 219 (2013) CrossRefMATHGoogle Scholar
  8. 8.
    Hod, S.: Phys. Rev. Lett. 81, 4293 (1998) MathSciNetADSCrossRefMATHGoogle Scholar
  9. 9.
    Kunstatter, G.: Phys. Rev. Lett. 90, 161301 (2003) MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    Maggiore, M.: Phys. Rev. Lett. 100, 141301 (2008) MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    Dolan, S.R.: Phys. Rev. D 82, 104003 (2010) ADSCrossRefGoogle Scholar
  12. 12.
    Wei, S.W., Li, R., Liu, Y.X., Ren, J.R.: J. High Energy Phys. 0903, 076 (2009) MathSciNetGoogle Scholar
  13. 13.
    Ghosh, A., Perez, A.: Phys. Rev. Lett. 107, 241301 (2011) ADSCrossRefGoogle Scholar
  14. 14.
    Jiang, Q.Q., Han, Y.: Phys. Lett. B 718, 584 (2012) ADSCrossRefGoogle Scholar
  15. 15.
    Jing, J.L., Pan, Q.Y.: Phys. Rev. D 71, 124011 (2005) MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    Akhmedova, V., Pilling, T., de Gill, A., Singleton, D.: Phys. Lett. B 666, 269 (2008) MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    Akhmedova, V., Pilling, T., de Gill, A., Singleton, D.: Phys. Lett. B 673, 227 (2009) MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    Zhang, J.Y., Zhao, Z.: J. High Energy Phys. 0510, 055 (2005) ADSCrossRefGoogle Scholar
  19. 19.
    Kaul, R.K., Majumdar, P.: Phys. Rev. Lett. 84, 5255 (2000) MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Institute of Theoretical PhysicsChina West Normal UniversityNanchongChina

Personalised recommendations