Advertisement

International Journal of Theoretical Physics

, Volume 52, Issue 12, pp 4427–4438 | Cite as

Time-Tangent Surfaces Around Biharmonic Particles and Its Lorentz Transformations in Heisenberg Spacetime

  • Talat Körpinar
  • Essin Turhan
Article

Abstract

In this work, we introduce a new spacetime using Heisenberg group and call this space as “Heisenberg spacetime”. We give a geometrical description of time-tangent surfaces around timelike biharmonic particle in \(\mathcal{H}_{1}^{4}\). Moreover, we obtain Lorentz transformations this particles. Additionally, we illustrate our results in Figs. 16.

Keywords

Energy Bienergy Heisenberg group Faraday tensor Lorentz transformations 

Notes

Acknowledgements

The authors would like to express their sincere gratitude to the referees for the valuable suggestions to improve the paper.

References

  1. 1.
    Bossavit, A.: Differential forms and the computation of fields and forces in electromagnetism. Eur. J. Mech. B, Fluids 10, 474–488 (1991) MathSciNetMATHGoogle Scholar
  2. 2.
    Caltenco, J.H., Linares, R., López-Bonilla, J.L.: Intrinsic geometry of curves and the Lorentz equation. Czechoslov. J. Phys. 52, 839–842 (2002) ADSCrossRefGoogle Scholar
  3. 3.
    Capovilla, R., Chryssomalakos, C., Guven, J.: Hamiltonians for curves. J. Phys. A, Math. Gen. 35, 6571–6587 (2002) MathSciNetADSCrossRefMATHGoogle Scholar
  4. 4.
    Carmeli, M.: Motion of a charge in a gravitational field. Phys. Rev. B 138, 1003–1007 (1965) MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    Deschamps, G.A.: Exterior Differential Forms. Springer, Berlin (1970) Google Scholar
  6. 6.
    Deschamps, G.A.: Electromagnetism and differential forms. Proc. IEEE 69, 676–696 (1981) CrossRefGoogle Scholar
  7. 7.
    Eells, J., Lemaire, L.: A report on harmonic maps. Bull. Lond. Math. Soc. 10, 1–68 (1978) MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Einstein, A.: Relativity: The Special and General Theory. Henry Holt, New York (1920) Google Scholar
  9. 9.
    Hehl, F.W., Obhukov, Y.: Foundations of Classical Electrodynamics. Birkhauser, Basel (2003) CrossRefMATHGoogle Scholar
  10. 10.
    Honig, E., Schucking, E., Vishveshwara, C.: Motion of charged particles in homogeneous electromagnetic fields. J. Math. Phys. 15, 774–781 (1974) MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    Jiang, G.Y.: 2-harmonic maps and their first and second variational formulas. Chin. Ann. Math., Ser. A 7(4), 389–402 (1986) MATHGoogle Scholar
  12. 12.
    Möller, C.: The Theory of Relativity. Clarendon, Oxford (1952) MATHGoogle Scholar
  13. 13.
    O’Neill, B.: Semi-Riemannian Geometry. Academic Press, New York (1983) MATHGoogle Scholar
  14. 14.
    Pina, E.: Lorentz transformation and the motion of a charge in a constant electromagnetic field. Rev. Mex. Fis. 16, 233–236 (1967) Google Scholar
  15. 15.
    Ringermacher, H.: Intrinsic geometry of curves and the Minkowski force. Phys. Lett. A 74, 381–383 (1979) MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    Synge, J.L.: Relativity: The General Theory. North Holland, Amsterdam (1960) MATHGoogle Scholar
  17. 17.
    Synge, J.L.: Time-like helices in flat spacetime. Proc. R. Ir. Acad., A Math. Phys. Sci. 65, 27–41 (1967) MathSciNetMATHGoogle Scholar
  18. 18.
    Trocheris, M.G.: Electrodynamics in a rotating frame of reference. Philos. Mag. 7, 1143–1155 (1949) MathSciNetGoogle Scholar
  19. 19.
    Turhan, E., Körpınar, T.: On characterization of timelike horizontal biharmonic curves in the Lorentzian Heisenberg group Heis3. Z. Naturforsch. A, J. Phys. Sci. 65a, 641–648 (2010) Google Scholar
  20. 20.
    Weber, J.: Relativity and Gravitation. Interscience, New York (1961) Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of MathematicsMuş Alparslan UniversityMuşTurkey
  2. 2.Department of MathematicsFırat UniversityElazığTurkey

Personalised recommendations