International Journal of Theoretical Physics

, Volume 52, Issue 12, pp 4323–4334 | Cite as

The Generalized Eigenvector Expansions of the Liouville Operator

  • Wencai Liu
  • Zhenyou Huang


In this paper, we study the generalized eigenvector expansions of the Liouville operator, and construct the corresponding rigged Liouville space. As an example, we obtain the rigged Liouville space for the harmonic oscillator of one-dimensional.


Liouville operator Rigged Liouville space Generalized eigenvector 


  1. 1.
    Antoniou, I., Gadella, M., Suchanecki, Z.: Some General Properties of the Liouville Operator. In: Lecture Notes in Physics, vol. 54, pp. 38–56 (1998) Google Scholar
  2. 2.
    Bohm, A.: The Rigged Hilbert Space in Quantum Mechanics. Lecture Notes in Physics, vol. 78. Springer, Berlin (1978) CrossRefGoogle Scholar
  3. 3.
    de la Madrid, R.: Quantum mechanics in rigged Hilbert space language. Ph.D. thesis, Universidad de Valladolid (2001). Available at
  4. 4.
    de la Madrid, R.: The role of the rigged Hilbert space in quantum mechanics. Eur. J. Phys. 26(2), 287 (2005) ADSCrossRefGoogle Scholar
  5. 5.
    Dirac, P.A.M.: The Principles of Quantum Mechanics. Clarendon, Oxford (1930) MATHGoogle Scholar
  6. 6.
    Gadella, M., Gomez, F.: A unified mathematical formalism for the Dirac formulation of quantum mechanics. Found. Phys. 32, 815–869 (2002) MathSciNetCrossRefGoogle Scholar
  7. 7.
    Gadella, M., Gomez-Cubillo, F.: Eigenfunction expansions and transformation theory. Acta Appl. Math. 109, 721–742 (2010) MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Gelfand, I.M., Vilenkin, N.Ya.: Generalized Functions, vol. 4. Applications of Harmonic Analysis. Academic Press, New York (1964). English translation Google Scholar
  9. 9.
    Liu, W., Huang, Z.: On the relationship of the spectra of the self-adjoint operator and its Liouville operator. Int. J. Theor. Phys. 52(8), 2578–2591 (2013) CrossRefMATHGoogle Scholar
  10. 10.
    Prugovečki, E.: Quantum Mechanics in Hilbert Space. Academic Press, New York (1981) MATHGoogle Scholar
  11. 11.
    Reed, M., Simon, B.: Methods of Modern Mathematical Physics, vol. 1. Functional Analysis. Academic Press, New York (1972) Google Scholar
  12. 12.
    von Neumann, J.: Mathematische Grundlagen der Quantentheorie. Berlin (1931); English translation by R.T. Beyer, Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton (1955) Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of MathematicsNanjing University of Science and TechnologyNanjingPeople’s Republic of China

Personalised recommendations