Advertisement

International Journal of Theoretical Physics

, Volume 52, Issue 11, pp 4100–4109 | Cite as

Distribution of Energy-Momentum in a Schwarzschild-Quintessence Space-Time Geometry

  • Irina Radinschi
  • Theophanes Grammenos
  • Andromahi Spanou
Article

Abstract

An analysis of the energy-momentum localization for a four-dimensional Schwarzschild black hole surrounded by dark energy in the form of quintessence is presented in order to provide expressions for the distributions of energy and momentum. The calculations are performed by using the Landau–Lifshitz and the Weinberg energy-momentum complexes. It is shown that all the momenta vanish, while the expression for the energy depends on the mass M of the black hole, the state parameter w q and the normalization factor c. The special case of \(w_{q}=-\frac{2}{3}\) is studied and some limiting cases are examined.

Keywords

Energy-momentum complexes Schwarzschild black hole Dark energy Quintessence 

References

  1. 1.
    Senovilla, J.M.M.: Class. Quantum Gravity 17, 2799 (2000) (and references therein) MathSciNetADSCrossRefMATHGoogle Scholar
  2. 2.
    Szabados, L.B.: Living Rev. Relativ. 7, 4 (2004) (and references therein) ADSGoogle Scholar
  3. 3.
    Einstein, A.: Sitz.ber. Preuss. Akad. Wiss. Berl. Philos.-Hist. Kl. 47, 778 (1915) Google Scholar
  4. 4.
    Einstein, A.: Sitz.ber. Preuss. Akad. Wiss. Berl. Philos.-Hist. Kl. 47, 799 (1915) Google Scholar
  5. 5.
    Trautman, A.: In: Witten, L. (ed.) Gravitation: an Introduction to Current Research, p. 169. Wiley, New York (1962) Google Scholar
  6. 6.
    Landau, L.D., Lifshitz, E.M.: The Classical Theory of Fields p. 280. Pergamon, Elmsford (1987) Google Scholar
  7. 7.
    Tolman, R.C.: Phys. Rev. 35, 875 (1930) ADSCrossRefMATHGoogle Scholar
  8. 8.
    Papapetrou, A.: Proc. R. Ir. Acad., A Math. Phys. Sci. 52, 11 (1948) MathSciNetGoogle Scholar
  9. 9.
    Bergmann, P.G., Thomson, R.: Phys. Rev. 89, 400 (1953) MathSciNetADSCrossRefMATHGoogle Scholar
  10. 10.
    Møller, C.: Ann. Phys. 4, 347 (1958) ADSCrossRefGoogle Scholar
  11. 11.
    Goldberg, J.N.: Phys. Rev. 111, 315 (1958) MathSciNetADSCrossRefMATHGoogle Scholar
  12. 12.
    Weinberg, S.: Gravitation and Cosmology: Principles and Applications of General Theory of Relativity p. 165. Wiley, New York (1972) Google Scholar
  13. 13.
    Qadir, A., Sharif, M.: Phys. Lett. A 167, 331 (1992) MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    Møller, C.: Ann. Phys. 12, 118 (1961) ADSCrossRefGoogle Scholar
  15. 15.
    Møller, C.: Tetrad fields and conservation laws in general relativity. In: Møller, C. (ed.) Proc. International School of Physics “Enrico Fermi”. Academic Press, San Diego (1962) Google Scholar
  16. 16.
    Nashed, G.G.L.: Eur. Phys. J. C 49, 851 (2007) MathSciNetADSCrossRefMATHGoogle Scholar
  17. 17.
    Maluf, J.W., Veiga, M.V.O., da Rocha-Neto, J.F.: Gen. Relativ. Gravit. 39, 227 (2007) ADSCrossRefMATHGoogle Scholar
  18. 18.
    Nester, J.M., Loi So, L., Vargas, T.: Phys. Rev. D 78, 044035 (2008) MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    Sharif, M., Taj, S.: Astrophys. Space Sci. 325, 75 (2010) ADSCrossRefMATHGoogle Scholar
  20. 20.
    Sousa, A.A., Pereira, R.B., Silva, A.C.: Gravit. Cosmol. 16, 25 (2010) MathSciNetADSCrossRefMATHGoogle Scholar
  21. 21.
    Virbhadra, K.S.: Phys. Rev. D 41, 1086 (1990) MathSciNetADSCrossRefMATHGoogle Scholar
  22. 22.
    Virbhadra, K.S.: Phys. Rev. D 42, 1066 (1990) MathSciNetADSCrossRefGoogle Scholar
  23. 23.
    Virbhadra, K.S.: Phys. Lett. A 157, 195 (1991) MathSciNetADSCrossRefGoogle Scholar
  24. 24.
    Virbhadra, K.S., Parikh, J.C.: Phys. Lett. B 331, 302 (1994) MathSciNetADSCrossRefGoogle Scholar
  25. 25.
    Aguirregabiria, J.M., Chamorro, A., Virbhadra, K.S.: Gen. Relativ. Gravit. 28, 1393 (1996) MathSciNetADSCrossRefMATHGoogle Scholar
  26. 26.
    Bringley, T.: Mod. Phys. Lett. A 17, 157 (2002) MathSciNetADSCrossRefMATHGoogle Scholar
  27. 27.
    Yang, I.-C., Radinschi, I.: Chin. J. Phys. 41, 326 (2003) MathSciNetGoogle Scholar
  28. 28.
    Xulu, S.S.: Astrophys. Space Sci. 283, 23 (2003) ADSCrossRefMATHGoogle Scholar
  29. 29.
    Sharif, M.: Nuovo Cimento B 119, 463 (2004) MathSciNetADSGoogle Scholar
  30. 30.
    Gad, R.M.: Astrophys. Space Sci. 295, 451 (2005) ADSCrossRefGoogle Scholar
  31. 31.
    Vagenas, E.C.: Int. J. Mod. Phys. D 14, 573 (2005) MathSciNetADSCrossRefMATHGoogle Scholar
  32. 32.
    Xulu, S.S.: Found. Phys. Lett. 19, 603 (2006) MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Gad, R.M., Fouad, A.: Astrophys. Space Sci. 310, 135 (2007) ADSCrossRefGoogle Scholar
  34. 34.
    Abbassi, A.M., Mirshekari, S.: Int. J. Mod. Phys. A 23, 4569 (2008) MathSciNetADSCrossRefMATHGoogle Scholar
  35. 35.
    Multamaki, T., Putaja, A., Vilja, I., Vagenas, E.C.: Class. Quantum Gravity 25, 075017 (2008) MathSciNetADSCrossRefGoogle Scholar
  36. 36.
    Mirshekari, S., Abbassi, A.M.: Int. J. Mod. Phys. A 24, 789 (2009) MathSciNetADSCrossRefMATHGoogle Scholar
  37. 37.
    Yang, I.-C., Lin, C.-L., Radinschi, I.: Int. J. Theor. Phys. 48, 248 (2009) MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Yang, I.-C., Lin, C.-L., Radinschi, I.: Int. J. Theor. Phys. 48, 2454 (2009) MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Abdel-Megied, M., Gad, R.M.: Adv. High Energy Phys. 2010, 379473 (2010) MathSciNetGoogle Scholar
  40. 40.
    Radinschi, I., Grammenos, Th., Spanou, A.: Cent. Eur. J. Phys. 9(5), 1173 (2011) CrossRefGoogle Scholar
  41. 41.
    Nourinezhad, Z., Mehdipour, S.H.: Indian J. Phys. 86, 919 (2012) ADSCrossRefGoogle Scholar
  42. 42.
    Sharif, M., Amir, M.J.: Can. J. Phys. 86, 1091 (2008) ADSCrossRefGoogle Scholar
  43. 43.
    Sharif, M., Amir, M.J.: Mod. Phys. Lett. A 23, 3167 (2008) MathSciNetADSCrossRefMATHGoogle Scholar
  44. 44.
    Sharif, M., Nazir, K.: Braz. J. Phys. 38, 156 (2008) ADSCrossRefGoogle Scholar
  45. 45.
    Chang, C.-C., Nester, J.M., Chen, C.-M.: Phys. Rev. Lett. 83, 1897 (1999) MathSciNetADSCrossRefMATHGoogle Scholar
  46. 46.
    Amendola, L., Tsujikawa, S.: Dark Energy—Theory and Observations. Cambridge University Press, Cambridge (2010) CrossRefMATHGoogle Scholar
  47. 47.
    Kiselev, V.V.: Class. Quantum Gravity 20, 1187 (2003) MathSciNetADSCrossRefMATHGoogle Scholar
  48. 48.
    Fernando, S.: Gen. Relativ. Gravit. 44, 1857 (2012) MathSciNetADSCrossRefMATHGoogle Scholar
  49. 49.
    Zhang, Y., Gui, Y.X.: Class. Quantum Gravity 23, 6141 (2006) MathSciNetADSCrossRefMATHGoogle Scholar
  50. 50.
    Zhang, Y., Gui, Y.X., Yu, F., Li, F.: Gen. Relativ. Gravit. 39, 1003 (2007) MathSciNetADSCrossRefMATHGoogle Scholar
  51. 51.
    Chen, J.-H., Wang, Y.-J.: Chin. Phys. 16, 3212 (2007) ADSCrossRefGoogle Scholar
  52. 52.
    Wei, Y.-H., Chu, Z.-H.: Chin. Phys. Lett. 28(10), 100403 (2011) ADSCrossRefGoogle Scholar
  53. 53.
    Tharanath, R., Kuriakose, V.C.: Mod. Phys. Lett. A 28, 1350003 (2013) MathSciNetADSCrossRefGoogle Scholar
  54. 54.
    Saleh, M., Thomas, B.B., Kofane, T.C.: Commun. Theor. Phys. 55(2), 291 (2011) CrossRefMATHGoogle Scholar
  55. 55.
    Virbhadra, K.S.: Phys. Rev. D 60, 104041 (1999) MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Irina Radinschi
    • 1
  • Theophanes Grammenos
    • 2
  • Andromahi Spanou
    • 3
  1. 1.Department of Physics“Gh. Asachi” Technical UniversityIasiRomania
  2. 2.Department of Civil EngineeringUniversity of ThessalyVolosGreece
  3. 3.School of Applied Mathematics and Physical SciencesNational Technical University of AthensAthensGreece

Personalised recommendations