International Journal of Theoretical Physics

, Volume 52, Issue 11, pp 4032–4044 | Cite as

On the Non-uniqueness Problem of the Covariant Dirac Theory and the Spin-Rotation Coupling

  • Mayeul Arminjon


Gorbatenko and Neznamov [arXiv:1301.7599, 2013] recently claimed the absence of the title problem. In this paper, the reason for that problem is reexplained by using the notions of a unitary transformation and of the mean value of an operator, invoked by them. Their arguments actually aim at proving the uniqueness of a particular prescription for solving this problem. But that prescription is again shown non-unique. Two Hamiltonians in the same reference frame in a Minkowski spacetime, only one of them including the spin-rotation coupling term, are proved to be physically non-equivalent. This confirms that the reality of that coupling should be checked experimentally.


Dirac Hamiltonian Curved spacetime Unitary transformation Rotating frame 



It was noted by M. V. Gorbatenko & V. P. Neznamov (private communication) and by a referee that, in the first version of this paper, it was not accounted for the fact that the energy can usually be subjected to a constant shift. The referee suggested a definition of physically equivalent energy operators which is equivalent to the one given below.


  1. 1.
    Gorbatenko, M.V., Neznamov, V.P.: Absence of the non-uniqueness problem of the Dirac theory in a curved spacetime. Spin-rotation coupling is not physically relevant. arXiv:1301.7599v2 [gr-qc]
  2. 2.
    Arminjon, M., Reifler, F.: A non-uniqueness problem of the Dirac theory in a curved spacetime. Ann. Phys. (Berlin) 523, 531–551 (2011). arXiv:0905.3686 [gr-qc] MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    Arminjon, M.: A solution of the non-uniqueness problem of the Dirac Hamiltonian and energy operators. Ann. Phys. (Berlin) 523, 1008–1028 (2011). Pre-peer-review version: arXiv:1107.4556v2 [gr-qc]. The equation numbers in the present paper refer to that arXiv version MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    Arminjon, M.: Should there be a spin-rotation coupling for a Dirac particle? arXiv:1211.1855v1 [gr-qc]
  5. 5.
    Arminjon, M., Reifler, F.: Basic quantum mechanics for three Dirac equations in a curved spacetime. Braz. J. Phys. 40, 242–255 (2010). arXiv:0807.0570 [gr-qc] ADSCrossRefGoogle Scholar
  6. 6.
    Brill, D.R., Wheeler, J.A.: Interaction of neutrinos and gravitational fields. Rev. Mod. Phys. 29, 465–479 (1957). Erratum: Rev. Modern Phys., 33, 623–624, 1961 MathSciNetADSCrossRefMATHGoogle Scholar
  7. 7.
    Chapman, T.C., Leiter, D.J.: On the generally covariant Dirac equation. Am. J. Phys. 44(9), 858–862 (1976) MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    Obukhov, Yu.N.: Spin, gravity, and inertia. Phys. Rev. Lett. 86, 192–195 (2001). arXiv:gr-qc/0012102 MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    Silenko, A.J., Teryaev, J.V.: Semiclassical limit for Dirac particles interaction with a gravitational field. Phys. Rev. D 71, 064016 (2005). arXiv:gr-qc/0407015 ADSCrossRefGoogle Scholar
  10. 10.
    Gorbatenko, M.V., Neznamov, V.P.: Solution of the problem of uniqueness and hermiticity of Hamiltonians for Dirac particles in gravitational fields. Phys. Rev. D 82, 104056 (2010). arXiv:1007.4631 [gr-qc] ADSCrossRefGoogle Scholar
  11. 11.
    Gorbatenko, M.V., Neznamov, V.P.: Uniqueness and self-conjugacy of Dirac Hamiltonians in arbitrary gravitational fields. Phys. Rev. D 83, 105002 (2011). arXiv:1102.4067v1 [gr-qc] ADSCrossRefGoogle Scholar
  12. 12.
    Gorbatenko, M.V., Neznamov, V.P.: A modified method for deriving self-conjugate Dirac Hamiltonians in arbitrary gravitational fields and its application to centrally and axially symmetric gravitational fields. arXiv:1107.0844v6 [gr-qc]
  13. 13.
    Arminjon, M.: A simpler solution of the non-uniqueness problem of the Dirac theory. Int. J. Geom. Meth. Mod. Phys. 10(3), 1350027 (2013) CrossRefMathSciNetGoogle Scholar
  14. 14.
    Mashhoon, B.: Neutron interferometry in a rotating frame of reference. Phys. Rev. Lett. 61, 2639–2642 (1988) ADSCrossRefGoogle Scholar
  15. 15.
    Hehl, F.W., Ni, W.T.: Inertial effects of a Dirac particle. Phys. Rev. D 42, 2045–2048 (1990) ADSCrossRefGoogle Scholar
  16. 16.
    Ryder, L.: Spin-rotation coupling and Fermi-Walker transport. Gen. Relativ. Gravit. 40, 1111–1115 (2008) MathSciNetADSCrossRefMATHGoogle Scholar
  17. 17.
    Schulten, K.: Relativistic quantum mechanics. Online course of the University of Illinois at Urbana-Champaign (1999) Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Laboratory “Soils, Solids, Structures, Risks”, 3SRCNRS and Universités de Grenoble: UJF, Grenoble-INPGrenoble Cedex 9France

Personalised recommendations