International Journal of Theoretical Physics

, Volume 52, Issue 10, pp 3577–3585 | Cite as

Improved Three-Party Quantum Secret Sharing Based on Bell States

  • Xiaoqing Tan
  • Lianxia Jiang


Hwang et al. (Phys. Scr. 83:045004, 2011) proposed a high efficient multiparty quantum secret sharing by using Greenberger-Horne-Zeilinger (GHZ) states. But Liu et al. (Phys. Scr. 84:045015, 2011) analyzed the security of Hwang et al.’s protocol and found that it was insecure for Charlie who might obtain half of information about the dealer’s secret directly. They put forward an improved protocol by adding operation on photons in sequence S 3. However, we point out Liu et al.’s protocol is not secure too if a dishonest participant Charlie carries out intercept-resend attack. And a further improved quantum secret sharing protocol is proposed based on Bell states in this paper. Our newly proposed protocol can stand against participant attack, provide a higher efficiency in transmission and reduce the complexity of implementation.


Quantum secret sharing Intercept-resend attack Bell states Unitary operation 


  1. 1.
    Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999) MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59, 162–168 (1999) ADSCrossRefGoogle Scholar
  3. 3.
    Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret. Phys. Rev. Lett. 83, 648–651 (1999) ADSCrossRefGoogle Scholar
  4. 4.
    Gottesman, D.: Theory of quantum secret sharing. Phys. Rev. Lett. 61, 042311 (2000) MathSciNetADSGoogle Scholar
  5. 5.
    Guo, G.P., Guo, G.C.: Quantum memory for individual polarized photons. Phys. Lett. A 318, 337–341 (2003) ADSCrossRefMATHGoogle Scholar
  6. 6.
    Lin, S., Gao, F., Qin, S.J., Wen, Q.Y., Zhu, F.C.: Quantum secret sharing between multiparty and multiparty with entanglement swapping. J. China Univ. Post Telecommun. 15, 63–68 (2008) CrossRefGoogle Scholar
  7. 7.
    Gao, F., Qin, S.J., Wen, Q.Y., Zhu, F.C.: A simple participant attack on the Bràdler-Dušek protocol. Quantum Inf. Comput. 7, 329–334 (2007) MathSciNetMATHGoogle Scholar
  8. 8.
    Qin, S.J., Gao, F., Wen, Q.Y., Zhu, F.C.: Cryptanalysis of the Hillery-Bužek-Berthiaume quantum secret-sharing. Phys. Rev. A 76, 062324 (2007) ADSCrossRefGoogle Scholar
  9. 9.
    Song, T.T., Zhang, J., Gao, F., Wen, Q.Y., Zhu, F.C.: Participant attack on quantum secret sharing based on entanglement swapping. Chin. Phys. B 18, 1333–1337 (2009) ADSCrossRefGoogle Scholar
  10. 10.
    Gao, F., Guo, F.Z., Wen, Q.Y., Zhu, F.C.: Comment on “Experimental demonstration of a quantum protocol for byzantine agreement and liar detection”. Phys. Rev. Lett. 101, 208901 (2008) ADSCrossRefGoogle Scholar
  11. 11.
    Gao, F., Qin, S.J., Wen, Q.Y., Zhu, F.C.: Cryptanalysis of multiparty controlled quantum secure direct communication using Greenberger–Horne–Zeilinger state. Opt. Commun. 283, 192–195 (2010) ADSCrossRefGoogle Scholar
  12. 12.
    Gao, F., Qin, S.J., Zhou, Z.Z., Wen, Q.Y.: Cryptanalysis of the arbitrated quantum signature protocols. Phys. Rev. A 84, 022344 (2011) ADSCrossRefGoogle Scholar
  13. 13.
    Guo, F.Z., Qin, S.J., Gao, F., Lin, S., Wen, Q.Y., Zhu, F.C.: Participant attack on a kind of MQSS schemes based on entanglement swapping. Eur. Phys. J. D 56, 445–448 (2010) ADSCrossRefGoogle Scholar
  14. 14.
    Hwang, T., Hwang, C.C., Li, C.M.: Multiparty quantum secret sharing based on GHZ states. Phys. Scr. 83, 045004 (2011) ADSCrossRefGoogle Scholar
  15. 15.
    Li, C.Y., Zhou, H.Y., Wang, Y., Deng, F.G.: Secure quantum key distribution network with Bell states and local unitary operations. Chin. Phys. Lett. 22, 1049–1052 (2005) ADSCrossRefGoogle Scholar
  16. 16.
    Li, X.H., Deng, F.G., Li, C.Y., Liang, Y.J., Zhou, P., Zhou, H.Y.: Deterministic secure quantum communication without maximally entangled states. J. Korean Phys. Soc. 49, 1354–1359 (2006) Google Scholar
  17. 17.
    Deng, F.G., Li, X.H., Zhou, P., Liang, Y.J., Zhou, H.Y.: Multiparty quantum secret report. Chin. Phys. Lett. 23, 1676–1679 (2006) ADSCrossRefGoogle Scholar
  18. 18.
    Li, C.Y., Li, X.H., Deng, F.G., Zhou, P., Liang, Y.J., Zhou, H.Y.: Efficient quantum cryptography network without entanglement and quantum memory. Chin. Phys. Lett. 23, 2896–2899 (2006) ADSCrossRefGoogle Scholar
  19. 19.
    Liu, X.F., Pan, R.J.: Cryptanalysis of quantum secret sharing based on GHZ states. Phys. Scr. 84, 045015 (2011) ADSCrossRefGoogle Scholar
  20. 20.
    Curty, M., Lütkenhaus, N.: Intercept-resend attacks in the Bennett-Brassard 1984 quantum-key-distribution protocol with weak coherent pulses. Phys. Rev. A 71, 062301 (2005) ADSCrossRefGoogle Scholar
  21. 21.
    Yang, C.W., Tsai, Ch.W., Hwang, T.: Thwarting intercept-and-resend attack on Zhang’s quantum secret sharing using collective rotation noises. Quantum Inf. Process. 11, 113–122 (2012) MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Li, Q., Chan, W.H., Long, D.Y.: Arbitrated quantum signature scheme using Bell states. Phys. Rev. A 79, 054307 (2009) MathSciNetADSCrossRefGoogle Scholar
  23. 23.
    Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Z.J.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72, 044302 (2005) ADSCrossRefGoogle Scholar
  24. 24.
    Qin, S.J., Gao, F., Wen, Q.Y., Zhu, F.C.: Cryptanalysis of multiparty quantum secret sharing of quantum state using entangled states. Phys. Lett. A 25, 3551–3554 (2008) MathSciNetGoogle Scholar
  25. 25.
    Gao, F., Wen, Q.Y., Zhu, F.C.: Comment on: “Quantum exam”. Phys. Lett. A 360, 748–750 (2006) ADSCrossRefGoogle Scholar
  26. 26.
    Lin, S., Gao, F., Guo, F.Z., Wen, Q.Y., Zhu, F.C.: Comment on “Multiparty quantum secret sharing of classical messages based on entanglement swapping”. Phys. Rev. A 76, 036301 (2007) MathSciNetADSCrossRefGoogle Scholar
  27. 27.
    Li, Y.M., Zhang, K.S., Peng, K.C.: Multiparty secret sharing of quantum information based on entanglement swapping. Phys. Lett. A 324, 420–424 (2004) MathSciNetADSCrossRefMATHGoogle Scholar
  28. 28.
    Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85, 5635–5638 (2000) ADSCrossRefGoogle Scholar
  29. 29.
    Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of MathematicsJinan UniversityGuangzhouP.R. China

Personalised recommendations