Skip to main content
Log in

Octonionic Non-Abelian Gauge Theory

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We have made an attempt to describe the octonion formulation of Abelian and non-Abelian gauge theory of dyons in terms of 2×2 Zorn vector matrix realization. As such, we have discussed the U(1) e ×U(1) m Abelian gauge theory and U(1)×SU(2) electroweak gauge theory and also the SU(2) e ×SU(2) m non-Abelian gauge theory in term of 2×2 Zorn vector matrix realization of split octonions. It is shown that SU(2) e characterizes the usual theory of the Yang Mill’s field (isospin or weak interactions) due to presence of electric charge while the gauge group SU(2) m may be related to the existence of ’t Hooft-Polyakov monopole in non-Abelian Gauge theory. Accordingly, we have obtained the manifestly covariant field equations and equations of motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Dirac, P.A.M.: Quantized singularities in the electromagnetic field. Proc. R. Soc. Lond. A 133, 60 (1931)

    Article  ADS  Google Scholar 

  2. Saha, M.N.: Note on Dirac’s theory of magnetic poles. Phys. Rev. 75, 1968 (1949)

    Article  ADS  Google Scholar 

  3. Malkus, W.: The interaction of the Dirac magnetic monopole with matter. Phys. Rev. 83, 899 (1951)

    Article  ADS  MATH  Google Scholar 

  4. Goto, E.: Expected behaviour of the Dirac monopole in the cosmic space. Prog. Theor. Phys. 30, 700 (1963)

    Article  ADS  Google Scholar 

  5. Rosenbaum, D.: Direct action and magnetic monopoles. Phys. Rev. 147, 891 (1966)

    Article  ADS  Google Scholar 

  6. Zwanziger, D.: A regular theory of magnetic monopoles. Phys. Rev. B 137, 647 (1965)

    Article  MathSciNet  ADS  Google Scholar 

  7. Goldhaber, A.S.: On the monopole-dyon system in non-Abelian Gauge theories. Phys. Rev. B 140, 1407 (1965)

    Article  MathSciNet  ADS  Google Scholar 

  8. Schwinger, J.: A magnetic model of matter. Phys. Rev. 144, 1087 (1966); [151, 1055 (1966)]

    Article  MathSciNet  ADS  Google Scholar 

  9. Goldhaber, A.S.: Spin and statistics connection for charge monopole composites. Phys. Rev. Lett. 36, 1122 (1976)

    Article  ADS  Google Scholar 

  10. Zwanzinger, D.: Quantum field theory of particles with both electric and magnetic charges. Phys. Rev. 176, 1489 (1968)

    Article  ADS  Google Scholar 

  11. Soper, A.: Multi-monopoles close together. Nucl. Phys. B 199, 290 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  12. Wu, T.T., Yang, C.N.: Dirac monopole without strings: monopole harmonics. Nucl. Phys. B 107, 365 (1976)

    Article  ADS  Google Scholar 

  13. Price, P.B.: Evidence for detection of a moving magnetic monopole. Phys. Rev. Lett. 35, 487 (1975)

    Article  ADS  Google Scholar 

  14. Cabibbo, N., Ferrari, E.: Quantum electrodynamics with Dirac monopoles. Nuovo Cimento 23, 1147 (1962)

    Article  MathSciNet  Google Scholar 

  15. ’t Hooft, G.: Magnetic monopoles in unified gauge theories. Nucl. Phys. B 79, 276 (1974)

    Article  MathSciNet  ADS  Google Scholar 

  16. Polyakov, A.M.: Particle spectrum in quantum field theory. JETP Lett. 20, 194 (1974)

    ADS  Google Scholar 

  17. Julia, B., Zee, A.: Poles with both magnetic and electric charges in non-Abelian gauge theory. Phys. Rev. D 11, 2227 (1975)

    Article  ADS  Google Scholar 

  18. Prasad, M.K.: Yang-Mills-Higgs monopole solutions of arbitrary topological charge. Commun. Math. Phys. 80, 137 (1981)

    Article  ADS  Google Scholar 

  19. Prasad, M.K., Sommerfield, C.M.: Exact classical solution for the ’t Hooft monopole and the Julia-Zee dyon. Phys. Rev. Lett. 35, 760 (1975)

    Article  ADS  Google Scholar 

  20. Bogomolny, E.B.: Stability of classical solutions. Sov. J. Nucl. Phys. 24, 449 (1976)

    Google Scholar 

  21. Dickson, L.E.: On quaternions and their generalization and the history of the eight square theorem. Ann. Math. 20, 155 (1919)

    Article  MATH  Google Scholar 

  22. Pais, A.: Remark on the algebra of interactions. Phys. Rev. Lett. 7, 291 (1961)

    Article  ADS  Google Scholar 

  23. Koplinger, J.: Dirac equation on hyperbolic octonions. Appl. Math. Comput. 182, 443 (2006)

    Article  MathSciNet  Google Scholar 

  24. Gogberashvili, M.: Octonionic version of Dirac equations. Int. J. Mod. Phys. A 21, 3513 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Gogberashvili, M.: Octonionic electrodynamics. J. Phys. A, Math. Gen. 39, 7099 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Nurowski, P.: Split octonions and Maxwell equations. Acta Phys. Pol. A 116, 992 (2009)

    Google Scholar 

  27. Dzhunushaliev, V.: Colorless operators in a non-associative quantum theory. Phys. Lett. A 355, 298 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. Dzhunushaliev, V.: Non-associativity, supersymmetry and hidden variables. J. Math. Phys. 49, 042108 (2008)

    Article  MathSciNet  Google Scholar 

  29. Nash, P.L.: Second gravity. J. Math. Phys. 51, 042501 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  30. Demir, S.: Hyperbolic octonion formulation of gravitational field equations. Int. J. Theor. Phys. 52, 105 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Bisht, P.S., Pandey, B., Negi, O.P.S.: Interpretations of octonion wave equations. Fizika B 17, 405 (2008)

    ADS  Google Scholar 

  32. Chanyal, B.C., Bisht, P.S., Negi, O.P.S.: Generalized octonion electrodynamics. Int. J. Theor. Phys. 49, 1333 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Chanyal, B.C., Bisht, P.S., Negi, O.P.S.: Generalized split-octonion electrodynamics. Int. J. Theor. Phys. 50, 1919 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  34. Dangwal, S., Bisht, P.S., Negi, O.P.S.: Octonionic gauge formulation for Dyonic fields (2006). arXiv:hep-th/0608061

  35. Negi, O.P.S., Dehnen, H.: Gauge formulation for two potential theory of dyons. Int. J. Theor. Phys. 50, 2446 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  36. Günaydin, M., Gürsey, F.: Quark structure and octonions. J. Math. Phys. 14, 1651 (1973)

    Article  MATH  Google Scholar 

  37. Günaydin, M.: Octonionic Hilbert spaces, the Poincaré group and SU(3). J. Math. Phys. 17, 1875 (1976)

    Article  ADS  Google Scholar 

  38. Catto, S.: Exceptional projective geometries and internal symmetries (2003). hep-th/0302079v1

  39. Chanyal, B.C., Bisht, P.S., Li, T., Negi, O.P.S.: Octonion quantum chromodynamics. Int. J. Theor. Phys. 51, 3410 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  40. Figueroa, J.M., Farrill, O.: Electromagnetic duality for children. www.maths.ed.ac.uk. Teaching-lectures (1998)

  41. Olive, D.I.: Exact electromagnetic duality (1995). hep-th/9508089

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. C. Chanyal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chanyal, B.C., Bisht, P.S. & Negi, O.P.S. Octonionic Non-Abelian Gauge Theory. Int J Theor Phys 52, 3522–3533 (2013). https://doi.org/10.1007/s10773-013-1655-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-013-1655-7

Keywords

Navigation