Advertisement

International Journal of Theoretical Physics

, Volume 52, Issue 9, pp 3238–3243 | Cite as

Cryptanalysis the Security of Enhanced Multiparty Quantum Secret Sharing of Classical Messages by Using Entanglement Swapping

  • Song Lin
  • Gongde Guo
Article

Abstract

Recently, an enhanced multiparty quantum secret sharing of classical message by using entanglement swapping was presented. In this protocol, a code table was used to improve the efficiency. However, as we show, this protocol is insecure in the sense that an outside attacker or two special dishonest agents can eavesdrop part or all information about the secret. Hence, this high efficiency may be unrealistic because it results in the decrease of security.

Keywords

Quantum secret sharing Bell states Code table 

References

  1. 1.
    Bennett, C.-H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. In: Proc. IEEE Int. Conf. on Computers, Systems, and Signal Processing, Bangalore, India, pp. 175–179 (1984) Google Scholar
  2. 2.
    Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002) ADSCrossRefGoogle Scholar
  3. 3.
    Hillery, M., Buz̆ek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999) MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59, 162 (1999) ADSCrossRefGoogle Scholar
  5. 5.
    Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret. Phys. Rev. Lett. 83, 648 (1999) ADSCrossRefGoogle Scholar
  6. 6.
    Tittel, W., Zbinden, H., Gisin, N.: Experimental demonstration of quantum secret sharing. Phys. Rev. A 63, 042301 (2001) ADSCrossRefGoogle Scholar
  7. 7.
    Guo, G.P., Guo, G.C.: Quantum secret sharing without entanglement. Phys. Lett. A 310, 247 (2003) MathSciNetADSMATHCrossRefGoogle Scholar
  8. 8.
    Lance, A.M., Symul, T., Bowen, W.P., Sanders, B.C., Lam, P.K.: Tripartite quantum state sharing. Phys. Rev. Lett. 92, 177903 (2004) ADSCrossRefGoogle Scholar
  9. 9.
    Xiao, L., Long, G.-L., Deng, F.-G., Pan, J.-W.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A 69, 052307 (2004) ADSCrossRefGoogle Scholar
  10. 10.
    Deng, F.G., Li, X.H., Li, C.Y., Zhou, P., Zhou, H.-Y.: Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein–Podolsky–Rosen pairs. Phys. Rev. A 72, 044301 (2005) ADSCrossRefGoogle Scholar
  11. 11.
    Hsu, L.-Y., Li, C.-M.: Quantum secret sharing using product states. Phys. Rev. A 71, 022321 (2005) ADSCrossRefGoogle Scholar
  12. 12.
    Yan, F.-L., Gao, T.: Quantum secret sharing between multiparty and multiparty without entanglement. Phys. Rev. A 72, 012304 (2005) ADSCrossRefGoogle Scholar
  13. 13.
    Gao, F., Qin, S.-J., Wen, Q.-Y., Zhu, F.-C.: A simple participant attack on the Bradler–Dusek protocol. Quantum Inf. Comput. 7, 329 (2007) MathSciNetMATHGoogle Scholar
  14. 14.
    Qin, S.-J., Gao, F., Wen, Q.-Y., Zhu, F.-C.: Cryptanalysis of the Hillery–Buzek–Berthiaume quantum secret-sharing protocol. Phys. Rev. A 76, 062324 (2007) ADSCrossRefGoogle Scholar
  15. 15.
    Yu, I.-C., Lin, F.-L., Huang, C.-Y.: Quantum secret sharing with multilevel mutually (un)biased bases. Phys. Rev. A 78, 012344 (2008) ADSCrossRefGoogle Scholar
  16. 16.
    Muralidharan, S., Panigrahi, P.K.: Perfect teleportation, quantum-state sharing, and superdense coding through a genuinely entangled five-qubit state. Phys. Rev. A 77, 032321 (2008) ADSCrossRefGoogle Scholar
  17. 17.
    Lin, S., Wen, Q.-Y., Qin, S.-J., Zhu, F.-C.: Multiparty quantum secret sharing with collective eavesdropping-check. Opt. Commun. 282, 4455–4459 (2009) ADSCrossRefGoogle Scholar
  18. 18.
    Li, Q., Chan, W.-H., Long, D.-Y.: Semiquantum secret sharing using entangled states. Phys. Rev. A 82, 022303 (2010) ADSCrossRefGoogle Scholar
  19. 19.
    Guo, F.-Z., Qin, S.-J., Gao, F., Lin, S., Wen, Q.-Y., Zhu, F.-C.: Participant attack on a kind of MQSS schemes based on entanglement swapping. Eur. Phys. J. D 56, 445–448 (2010) ADSCrossRefGoogle Scholar
  20. 20.
    Yang, Y.-G., Teng, Y.-W., Chai, H.-P., Wen, Q.-Y.: Verifiable quantum (k,n)-threshold secret key sharing. Int. J. Theor. Phys. 50, 792–798 (2011) MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Shi, R.-H., Huang, L.-S., Yang, W., Zhong, H.: Multi-party quantum state sharing of an arbitrary two-qubit state with Bell states. Quantum Inf. Process. 10, 231–239 (2011) MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Nie, Y.-Y., Li, Y.-H., Liu, J.-C., Sang, M.-H.: Quantum state sharing of an arbitrary three-qubit state by using four sets of W-class states. Opt. Commun. 284, 1457 (2011) ADSCrossRefGoogle Scholar
  23. 23.
    Gu, B., Xu, F., Ding, L.-G., Zhang, Y.-A.: High-capacity three-party quantum secret sharing with hyperentanglement. Int. J. Theor. Phys. 51, 3559–3566 (2012) MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Du, R.-G., Sun, Z.-W., Wang, B.-H., Long, D.-Y.: Quantum secret sharing of secure direct communication using one-time pad. Int. J. Theor. Phys. 51, 2727–2736 (2012) MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Chou, Y.-H., Chen, C.-Y., Fan, R.-K., Chao, H.-C., Lin, F.-J.: Enhanced multiparty quantum secret sharing of classical messages by using entanglement swapping. IET Inf. Secur. 6, 84–92 (2012) CrossRefGoogle Scholar
  26. 26.
    Ba An, N.: Efficient semi-direct three-party quantum secure exchange of information. Phys. Lett. A 360, 518–521 (2007) ADSCrossRefGoogle Scholar
  27. 27.
    Li, C., Song, H.-S., Zhou, L., Wu, C.-F.: A random quantum key distribution by using Bell states. J. Opt. B, Quantum Semiclass. Opt. 5, 155–157 (2003) ADSCrossRefGoogle Scholar
  28. 28.
    Gao, F., Qin, S.-J., Wen, Q.-Y., Zhu, F.-C.: One-time pads cannot be used to improve the efficiency of quantum communication. Phys. Lett. A 365, 386–388 (2007) ADSMATHCrossRefGoogle Scholar
  29. 29.
    Gao, F., Qin, S.-J., Wen, Q.-Y., Zhu, F.-C.: A simple participant attack on the Bradler–Dusek protocol. Quantum Inf. Comput. 7, 329–334 (2007) MathSciNetMATHGoogle Scholar
  30. 30.
    Qin, S.-J., Gao, F., Wen, Q.-Y., Zhu, F.-C.: Cryptanalysis of the Hillery–Buzek–Berthiaume quantum secret-sharing protocol. Phys. Rev. A 76, 062324 (2007) ADSCrossRefGoogle Scholar
  31. 31.
    Gao, F., Wen, Q.-Y., Zhu, F.-C.: Comment on “Quantum exam”. Phys. Lett. A 360, 748–750 (2007). Phys. Lett. A 350, 174 (2007) ADSCrossRefGoogle Scholar
  32. 32.
    Gao, F., Qin, S.-J., Wen, Q.-Y., Zhu, F.-C.: Cryptanalysis of multiparty controlled quantum secure direct communication using Greenberger–Horne–Zeilinger state. Opt. Commun. 283, 192–195 (2010) ADSCrossRefGoogle Scholar
  33. 33.
    Gao, F., Guo, F.-Z., Wen, Q.-Y., Zhu, F.-C.: Comment on “Experimental demonstration of a quantum protocol for Byzantine agreement and liar detection”. Phys. Rev. Lett. 101, 208901 (2008) ADSCrossRefGoogle Scholar
  34. 34.
    Song, T.-T., Zhang, J., Gao, F., Wen, Q.-Y., Zhu, F.-C.: Participant attack on quantum secret sharing based on entanglement swapping. Chin. Phys. B 18, 1333 (2009) ADSCrossRefGoogle Scholar
  35. 35.
    Guo, F.-Z., Qin, S.-J., Gao, F., Lin, S., Wen, Q.-Y., Zhu, F.-C.: Participant attack on a kind of MQSS schemes based on entanglement swapping. Eur. Phys. J. D 56, 445–448 (2010) ADSCrossRefGoogle Scholar
  36. 36.
    Lin, S., Gao, F., Guo, F.-Z., Wen, Q.-Y., Zhu, F.-C.: Comment on “Multiparty quantum secret sharing of classical messages based on entanglement swapping”. Phys. Rev. A 76, 036301 (2007) MathSciNetADSCrossRefGoogle Scholar
  37. 37.
    Lo, H.K., Ko, T.M.: Some attacks on quantum-based cryptographic protocols. Quantum Inf. Comput. 5, 40–47 (2005) MathSciNetMATHGoogle Scholar
  38. 38.
    Gao, F., Qin, S.-J., Guo, F.-Z., Wen, Q.-Y.: Cryptanalysis of the arbitrated quantum signature protocols. Phys. Rev. A 84, 022344 (2011) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.School of Mathematics and Computer ScienceFujian Normal UniversityFuzhouChina
  2. 2.Key Lab of Network Security and CryptographyFujian Normal UniversityFuzhouChina

Personalised recommendations