Advertisement

International Journal of Theoretical Physics

, Volume 52, Issue 9, pp 3057–3065 | Cite as

Entanglement Properties in the System of Three Atoms Trapped in Three Distant Cavities Connected by Two Optical Fibers

  • Dao-Ming Lu
Article

Abstract

This paper discusses the entanglement dynamics of a coupled cavity quantum electrodynamics (CQED) setup, which comprises three two-level atoms resonantly interacting with three cavities that are coupled by two optical fibers. The influences of atom-cavity coupling constant on the entanglement between atoms and that between cavities are discussed. The results obtained from the numerical method show that the entanglement between non-adjacent atoms or that between adjacent cavities has a nonlinear relation with increasing of the atom-cavity coupling coefficient. On the other hand, the entanglement between non-adjacent cavities is strengthened and the entanglement between adjacent atoms is weakened with increasing of atom-cavity coupling constant.

Keywords

Quantum optics Two-level atom Atom-cavity-fiber compound system Quantum entanglement 

Notes

Acknowledgements

This work is supported by the Natural Science Foundation of Fujian Province Under Grant No. 2011J01018 and Fujian Provincial Department of Education Under Grant No. JA12327

References

  1. 1.
    Davidovich, L., Zagury, N., Brune, M., Raimond, J.M., Haroche, S.: Phys. Rev. A 50, R895 (1994) ADSCrossRefGoogle Scholar
  2. 2.
    Bennett, C.H., Brassard, G., Mermin, N.D.: Phys. Rev. Lett. 168, 557 (1992) MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    Cirac, J.I., Zoller, P.: Phys. Rev. Lett. 74, 4091 (1995) ADSCrossRefGoogle Scholar
  4. 4.
    Zhang, B.: Opt. Commun. 283, 4676 (2010) ADSCrossRefGoogle Scholar
  5. 5.
    Wu, C., Fang, M.F.: Chin. Phys. B 19, 020309 (2010) ADSCrossRefGoogle Scholar
  6. 6.
    Zeng, K., Fang, M.F.: Chin. Phys. 14, 2009 (2005) ADSCrossRefGoogle Scholar
  7. 7.
    Xiang, S.H., Shao, B., Song, K.H.: Commun. Theor. Phys. 52, 835 (2009) ADSMATHCrossRefGoogle Scholar
  8. 8.
    Yang, Z.B., Zhang, B., Zheng, S.B.: Opt. Commun. 283, 2872 (2010) ADSCrossRefGoogle Scholar
  9. 9.
    Guo, G.C., Zhang, Y.S.: Phys. Rev. A 65, 054302 (2002) ADSCrossRefGoogle Scholar
  10. 10.
    Yang, Z.B., Su, W.J.: Chin. Phys. 16, 435 (2007) ADSCrossRefGoogle Scholar
  11. 11.
    Pellizzari, T.: Phys. Rev. Lett. 79, 5242 (1997) ADSCrossRefGoogle Scholar
  12. 12.
    Ogden, C.D., Irish, E.K., Kim, M.S.: Phys. Rev. A 78, 063805 (2008) ADSCrossRefGoogle Scholar
  13. 13.
    Serafini, A., Mancini, S., Bose, S.: Phys. Rev. Lett. 96, 010503 (2006) ADSCrossRefGoogle Scholar
  14. 14.
    Ye, S.Y., Zhong, Z.R., Zheng, S.B.: Phys. Rev. A 77, 014303 (2008) ADSCrossRefGoogle Scholar
  15. 15.
    Zheng, S.B., Yang, Z.B., Xia, Y.: Phys. Rev. A 81, 015804 (2010) ADSCrossRefGoogle Scholar
  16. 16.
    Lu, D.M.: Acta Phys. Sin. 60, 120303 (2011) Google Scholar
  17. 17.
    Zheng, S.B., Yang, C.P., Nori, F.: Phys. Rev. A 82, 042327 (2010) ADSCrossRefGoogle Scholar
  18. 18.
    Zhang, Y.Q., Hu, Z.D., Xu, J.B.: Int. J. Theor. Phys. 50, 2438 (2011) MATHCrossRefGoogle Scholar
  19. 19.
    Liao, C.G., Yang, Z.B., Luo, C.L., et al.: Opt. Commun. 284, 1920 (2011) ADSCrossRefGoogle Scholar
  20. 20.
    Hartmann, M.J., Brandao, F.G.S.L., Plenio, M.B.: Phys. Rev. Lett. 99, 160501 (2007) ADSCrossRefGoogle Scholar
  21. 21.
    Yin, Z.Q., Li, F.L.: Phys. Rev. A 75, 012324 (2007) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Electronic EngineeringWuyi UniversityWuyishanChina

Personalised recommendations