Skip to main content
Log in

Nonclassicality of Coherent Photon-Subtracted Two Single-Modes Squeezed Vacuum State

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We introduce a two-mode non-Gaussian state, generated by nonlocal coherent photon-subtraction (CPS) from two single-mode squeezed vacuum states (TSSV). Its normalized factor is turned out to be related with a Legendre polynomial. We further investigate the nonclassical properties of the CPS-TSSV through cross-correlation function, antibunching effect, photon number distribution, wave function and Wigner function. It is shown that the CPS operation can produce the vortex state and can exhibit the highly nonclassical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhang, H.-L., Jia, F., Xu, X.-X., Tao, X.-Y., Hu, L.-Y.: Nonclassicality and decoherence of photon-subtraction squeezing-enhanced thermal state. Int. J. Theor. Phys. 51, 3330–3343 (2012)

    Article  MATH  Google Scholar 

  2. Agarwal, G.S., Tara, K.: Nonclassical properties of states generated by the excitations on a coherent state. Phys. Rev. A 43, 492–497 (1991)

    Article  ADS  Google Scholar 

  3. Zavatta, A., Viciani, S., Bellini, M.: Quantum-to-classical transition with single-photon-added coherent states of light. Science 306(5696), 660–662 (2004)

    Article  ADS  Google Scholar 

  4. Kalamidas, D., Gerry, C.C., Benmoussa, A.: Proposal for generating a two-photon added coherent state via down-conversion with a single crystal. Phys. Lett. A 372, 1937 (2008)

    Article  ADS  Google Scholar 

  5. Hu, L.Y., Zhang, Z.M.: Nonclassicality and decoherence of photon-added squeezed thermal state in thermal environment. J. Opt. Soc. Am. B 29, 529–537 (2012)

    Article  ADS  Google Scholar 

  6. Hu, L.Y., Jia, F., Zhang, Z.M.: Entanglement and nonclassicality of photon-added two-mode squeezed thermal state. J. Opt. Soc. Am. B 29(6), 1456–1464 (2012)

    Article  ADS  Google Scholar 

  7. Dirac, P.A.M.: The Principles of Quantum Mechanics. Cambridge University Press, Cambridge (1930)

    MATH  Google Scholar 

  8. Lee, S.-Y., Nha, H.: Quantum state engineering by a coherent superposition of photon subtraction and addition. Phys. Rev. A 82, 053812 (2010)

    Article  ADS  Google Scholar 

  9. Lee, S.Y., Ji, S.W., Kim, H.J., Nha, H.: Enhancing quantum entanglement for continuous variables by a coherent superposition of photon subtraction and addition. Phys. Rev. A 84, 012302 (2011)

    Article  ADS  Google Scholar 

  10. Kim, M.S., Jeong, H., Zavatta, A., Parigi, V., Bellini, M.: Scheme for proving the bosonic commutation relation using single-photon interference. Phys. Rev. Lett. 101, 260401 (2008)

    Article  ADS  Google Scholar 

  11. Zavatta, A., Parigi, V., Kim, M.S., Jeong, H., Bellini, M.: Experimental demonstration of the bosonic commutation relation via superpositions of quantum operations on thermal light fields. Phys. Rev. Lett. 103, 140406 (2009)

    Article  ADS  Google Scholar 

  12. Ourjoumtsev, A., Dantan, A., Tualle-Brouri, R., Grangier, Ph.: Increasing entanglement between Gaussian states by coherent photon subtraction. Phys. Rev. Lett. 98, 030502 (2007)

    Article  ADS  Google Scholar 

  13. Fiurasek, J.: Conditional generation of N-photon entangled states of light. Phys. Rev. A 65, 053818 (2002)

    Article  ADS  Google Scholar 

  14. Kok, P., Lee, H., Dowling, J.P.: Creation of large-photon-number path entanglement conditioned on photodetection. Phys. Rev. A 65, 052104 (2002)

    Article  ADS  Google Scholar 

  15. Lee, S.Y., Nha, H.: Second-order superposition operations via Hong-Ou-Mandel interference. Phys. Rev. A 85, 043816 (2012)

    Article  ADS  Google Scholar 

  16. Puri, R.R.: Mathematical Methods of Quantum Optics, p. 269. Springer, Berlin (2001) (A.29)

    Book  MATH  Google Scholar 

  17. Hu, L.Y., Xu, X.-x., Wang, Z.-s., Xu, X.-f.: Photon-subtracted squeezed thermal state: nonclassicality and decoherence. Phys. Rev. A 82, 043842 (2010)

    Article  ADS  Google Scholar 

  18. Zhang, W.M., Feng, D.F., Gilmore, R.: Coherent state: theory and some applications. Rev. Mod. Phys. 62, 867–927 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  19. Lai, W.K., Buzek, V., Knight, P.L.: Dynamic of a three-level atom in a two-mode squeezed vacuum. Phys. Rev. A 44(9), 6043–6056 (1991)

    Article  ADS  Google Scholar 

  20. Cresser, J.D., Hillery, M.: Time-averaged properties of the Jaynes-Cummings model. Phys. Rev. A 40, 1464 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  21. Fan, H., Hu, L.: Two quantum-mechanical photocount formulas. Opt. Lett. 33, 443–445 (2008)

    Article  ADS  Google Scholar 

  22. Agarwal, G.S., Puri, R.R., Singh, R.P.: Vortex states for the quantized radiation field. Phys. Rev. A 56, 4207 (1997)

    Article  ADS  Google Scholar 

  23. Bandyopadhyay, A., Singh, R.P.: Wigner distribution of elliptical quantum optical vortex. Opt. Commun. 284, 256–261 (2011)

    Article  ADS  Google Scholar 

  24. Wigner, E.P.: On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40, 749–759 (1932)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This project was supported by the National Natural Science Foundation of China (Grant Nos. 11264018, 11175113 and 11264016) and the Natural Science Foundation of Jiangxi Province of China (No. 2009GZW0006) as well as the Research Foundation of the Education Department of Jiangxi Province of China (Nos. GJJ12171 and GJJ12172).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-yun Hu.

Appendices

Appendix A: Derivation of \(\mathcal{P} ( m_{a},n_{b} )\)

The photon number distribution (PND) of the CPS-TSSV is defined by \(\mathcal{P} ( m_{a},n_{b} ) = \langle m_{a},n_{b}\vert \rho \vert m_{a},n_{b} \rangle \), which means the probability of finding (m a ,n b ) photons in the two single-modes field.

$$ \mathcal{P} ( m_{a},n_{b} ) = \bigl\langle m_{a},n_{b}\vert \rho \vert m_{a},n_{b} \bigr\rangle =N_{m}^{-1}\bigl \vert \langle m_{a},n_{b}\vert \vert \psi _{m} \rangle \bigr \vert ^{2}. $$
(43)

First let’s calculate 〈m a ,n b ||ψ m 〉. Considering Eq. (4) and using the completeness relation of the coherent state, we obtain the following results:

(44)

Through expressing \(\alpha ^{m_{a}}\) and \(\beta ^{n_{b}}\) as\(\frac{\partial ^{m_{a}}}{\partial \mu ^{m_{a}}}e^{\mu \alpha }|_{\mu =0}\) and \(\frac{\partial ^{n_{b}}}{\partial \nu ^{n_{b}}}e^{\nu \beta }|_{\nu =0}\), and using the integration formula [7], we calculate Eq. (44) as

(45)

Further using the generating function of the Hermite polynomial H m (q)

$$ H_{m} ( q ) =\frac{\partial ^{m} ( e^{-t^{2}+2qt} ) }{\partial t^{m}}\bigg|_{t=0}, $$
(46)

we can get rid of three partial derivations and introduce one partial derivation on variable t (t is not τ). Then we obtain the final form of 〈m a ,n b ||ψ m 〉 as

(47)

where we define

$$ \begin{aligned} H_{m_{a}}(x,y,t)& \equiv H_{m_{a}} \biggl( -\sqrt{ \frac{\tanh \lambda _{1}}{\tanh \lambda _{1}x^{2}+\tanh \lambda _{2}y^{2}}}xt \biggr) , \\ H_{n_{b}}(x,y,t)& \equiv H_{n_{b}} \biggl( -\sqrt{ \frac{\tanh \lambda _{2}}{\tanh \lambda _{1}x^{2}+\tanh \lambda _{2}y^{2}}}yt \biggr) . \end{aligned} $$
(48)

After substituting Eq. (47) into Eq. (43), we obtain the formula to calculate the photon number distribution (PND) of the CPSSVS.

$$ \begin{aligned}[b] \mathcal{P} ( m_{a},n_{b} ) &= N_{m}^{-1} \bigl \vert \langle m_{a},n_{b}\vert \vert \psi _{m} \rangle \bigr \vert ^{2} \\ & =N_{m}^{-1}P\biggl \vert \frac{\partial ^{m}}{\partial t^{m}} \bigl( H_{m_{a}}(x,y,t)H_{n_{b}}(x,y,t)e^{-t^{2}} \bigr) \big|_{t=0}\biggr \vert ^{2}, \end{aligned} $$
(49)

where

$$ P\equiv \biggl \vert \frac{ ( \tanh \lambda _{1}x^{2}+\tanh \lambda _{2}y^{2} ) ^{m}\tanh ^{m_{a}}\lambda _{1}\tanh ^{n_{b}}\lambda _{2}}{m_{a}!n_{b}!2^{m+m_{a}+n_{b}}\cosh \lambda _{1}\cosh \lambda _{2}}\biggr \vert . $$
(50)

Appendix B: Derivation of WF (36) for CPSSVS

According to Eqs. (34) and \(\rho =N_{m}^{-1}\vert \psi _{m} \rangle \langle \psi _{m}\vert \), we have

(51)

where we define

(52)

Using the following formula,

$$ \begin{aligned} e^{xa}f\bigl(a,a^{\dagger }\bigr)e^{-xa}& =f \bigl(a,a^{\dagger }+x\bigr), \\ e^{-xa^{\dagger }}f\bigl(a,a^{\dagger }\bigr)e^{xa^{\dagger }}& =f \bigl(a+x,a^{\dagger }\bigr), \end{aligned} $$
(53)

and the integration formula (7), we obtain

(54)

where

(55)

Further using the formula about Hermite polynomials,

(56)

we can see

(57)

where C is defined in Eq. (39). Substituting Eqs. (54) and (57) into Eq. (51), we can finally obtain Eq. (36).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, Q., Huang, L., Hu, Ly. et al. Nonclassicality of Coherent Photon-Subtracted Two Single-Modes Squeezed Vacuum State. Int J Theor Phys 52, 2886–2903 (2013). https://doi.org/10.1007/s10773-013-1582-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-013-1582-7

Keywords

Navigation