Advertisement

International Journal of Theoretical Physics

, Volume 52, Issue 8, pp 2886–2903 | Cite as

Nonclassicality of Coherent Photon-Subtracted Two Single-Modes Squeezed Vacuum State

  • Qin Guo
  • Li Huang
  • Li-yun Hu
  • Xue-xiang Xu
  • Hao-liang Zhang
Article

Abstract

We introduce a two-mode non-Gaussian state, generated by nonlocal coherent photon-subtraction (CPS) from two single-mode squeezed vacuum states (TSSV). Its normalized factor is turned out to be related with a Legendre polynomial. We further investigate the nonclassical properties of the CPS-TSSV through cross-correlation function, antibunching effect, photon number distribution, wave function and Wigner function. It is shown that the CPS operation can produce the vortex state and can exhibit the highly nonclassical properties.

Keywords

Non-Gaussian state Coherent photon-subtraction The vortex state Nonclassicality 

Notes

Acknowledgements

This project was supported by the National Natural Science Foundation of China (Grant Nos. 11264018, 11175113 and 11264016) and the Natural Science Foundation of Jiangxi Province of China (No. 2009GZW0006) as well as the Research Foundation of the Education Department of Jiangxi Province of China (Nos. GJJ12171 and GJJ12172).

References

  1. 1.
    Zhang, H.-L., Jia, F., Xu, X.-X., Tao, X.-Y., Hu, L.-Y.: Nonclassicality and decoherence of photon-subtraction squeezing-enhanced thermal state. Int. J. Theor. Phys. 51, 3330–3343 (2012) MATHCrossRefGoogle Scholar
  2. 2.
    Agarwal, G.S., Tara, K.: Nonclassical properties of states generated by the excitations on a coherent state. Phys. Rev. A 43, 492–497 (1991) ADSCrossRefGoogle Scholar
  3. 3.
    Zavatta, A., Viciani, S., Bellini, M.: Quantum-to-classical transition with single-photon-added coherent states of light. Science 306(5696), 660–662 (2004) ADSCrossRefGoogle Scholar
  4. 4.
    Kalamidas, D., Gerry, C.C., Benmoussa, A.: Proposal for generating a two-photon added coherent state via down-conversion with a single crystal. Phys. Lett. A 372, 1937 (2008) ADSCrossRefGoogle Scholar
  5. 5.
    Hu, L.Y., Zhang, Z.M.: Nonclassicality and decoherence of photon-added squeezed thermal state in thermal environment. J. Opt. Soc. Am. B 29, 529–537 (2012) ADSCrossRefGoogle Scholar
  6. 6.
    Hu, L.Y., Jia, F., Zhang, Z.M.: Entanglement and nonclassicality of photon-added two-mode squeezed thermal state. J. Opt. Soc. Am. B 29(6), 1456–1464 (2012) ADSCrossRefGoogle Scholar
  7. 7.
    Dirac, P.A.M.: The Principles of Quantum Mechanics. Cambridge University Press, Cambridge (1930) MATHGoogle Scholar
  8. 8.
    Lee, S.-Y., Nha, H.: Quantum state engineering by a coherent superposition of photon subtraction and addition. Phys. Rev. A 82, 053812 (2010) ADSCrossRefGoogle Scholar
  9. 9.
    Lee, S.Y., Ji, S.W., Kim, H.J., Nha, H.: Enhancing quantum entanglement for continuous variables by a coherent superposition of photon subtraction and addition. Phys. Rev. A 84, 012302 (2011) ADSCrossRefGoogle Scholar
  10. 10.
    Kim, M.S., Jeong, H., Zavatta, A., Parigi, V., Bellini, M.: Scheme for proving the bosonic commutation relation using single-photon interference. Phys. Rev. Lett. 101, 260401 (2008) ADSCrossRefGoogle Scholar
  11. 11.
    Zavatta, A., Parigi, V., Kim, M.S., Jeong, H., Bellini, M.: Experimental demonstration of the bosonic commutation relation via superpositions of quantum operations on thermal light fields. Phys. Rev. Lett. 103, 140406 (2009) ADSCrossRefGoogle Scholar
  12. 12.
    Ourjoumtsev, A., Dantan, A., Tualle-Brouri, R., Grangier, Ph.: Increasing entanglement between Gaussian states by coherent photon subtraction. Phys. Rev. Lett. 98, 030502 (2007) ADSCrossRefGoogle Scholar
  13. 13.
    Fiurasek, J.: Conditional generation of N-photon entangled states of light. Phys. Rev. A 65, 053818 (2002) ADSCrossRefGoogle Scholar
  14. 14.
    Kok, P., Lee, H., Dowling, J.P.: Creation of large-photon-number path entanglement conditioned on photodetection. Phys. Rev. A 65, 052104 (2002) ADSCrossRefGoogle Scholar
  15. 15.
    Lee, S.Y., Nha, H.: Second-order superposition operations via Hong-Ou-Mandel interference. Phys. Rev. A 85, 043816 (2012) ADSCrossRefGoogle Scholar
  16. 16.
    Puri, R.R.: Mathematical Methods of Quantum Optics, p. 269. Springer, Berlin (2001) (A.29) MATHCrossRefGoogle Scholar
  17. 17.
    Hu, L.Y., Xu, X.-x., Wang, Z.-s., Xu, X.-f.: Photon-subtracted squeezed thermal state: nonclassicality and decoherence. Phys. Rev. A 82, 043842 (2010) ADSCrossRefGoogle Scholar
  18. 18.
    Zhang, W.M., Feng, D.F., Gilmore, R.: Coherent state: theory and some applications. Rev. Mod. Phys. 62, 867–927 (1990) MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    Lai, W.K., Buzek, V., Knight, P.L.: Dynamic of a three-level atom in a two-mode squeezed vacuum. Phys. Rev. A 44(9), 6043–6056 (1991) ADSCrossRefGoogle Scholar
  20. 20.
    Cresser, J.D., Hillery, M.: Time-averaged properties of the Jaynes-Cummings model. Phys. Rev. A 40, 1464 (1989) MathSciNetADSCrossRefGoogle Scholar
  21. 21.
    Fan, H., Hu, L.: Two quantum-mechanical photocount formulas. Opt. Lett. 33, 443–445 (2008) ADSCrossRefGoogle Scholar
  22. 22.
    Agarwal, G.S., Puri, R.R., Singh, R.P.: Vortex states for the quantized radiation field. Phys. Rev. A 56, 4207 (1997) ADSCrossRefGoogle Scholar
  23. 23.
    Bandyopadhyay, A., Singh, R.P.: Wigner distribution of elliptical quantum optical vortex. Opt. Commun. 284, 256–261 (2011) ADSCrossRefGoogle Scholar
  24. 24.
    Wigner, E.P.: On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40, 749–759 (1932) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Qin Guo
    • 1
    • 2
  • Li Huang
    • 1
  • Li-yun Hu
    • 1
    • 2
  • Xue-xiang Xu
    • 1
    • 2
  • Hao-liang Zhang
    • 1
    • 2
  1. 1.Center for Quantum Science and Technology, College of Physics and Communication ElectronicsJiangxi Normal UniversityNanchangChina
  2. 2.Key Laboratory of Optoelectronic and Telecommunication of JiangxiNanchangChina

Personalised recommendations