International Journal of Theoretical Physics

, Volume 52, Issue 8, pp 2760–2772 | Cite as

The Lexicographic Product of Po-groups and n-Perfect Pseudo Effect Algebras

  • Anatolij Dvurečenskij
  • Jan Krňávek


We study the existence of different types of the Riesz Decomposition Property for the lexicographic product of two partially ordered groups. Special attention is paid to the lexicographic product of the group of integers with an arbitrary po-group. Then we apply these results to the study of n-perfect pseudo effect algebras. We show that the category of strong n-perfect pseudo-effect algebras is categorically equivalent to the category of torsion-free directed partially ordered groups with RDP1.


Pseudo effect algebra Po-group -Group Strong unit Riesz Decomposition Property Lexicographic product n-Perfect pseudo effect algebra 



The authors are very indebted to anonymous referees for their careful reading and suggestions which helped us to improve the readability of the paper.


  1. 1.
    Chang, C.C.: Algebraic analysis of many-valued logics. Trans. Am. Math. Soc. 88, 467–490 (1958) MATHCrossRefGoogle Scholar
  2. 2.
    Di Nola, A., Dvurečenskij, A., Tsinakis, C.: On perfect GMV-algebras. Commun. Algebra 36, 1221–1249 (2008) MATHCrossRefGoogle Scholar
  3. 3.
    Di Nola, A., Lettieri, A.: Perfect MV-algebras are categorical equivalent to Abelian -groups. Stud. Log. 53, 417–432 (1994) MATHCrossRefGoogle Scholar
  4. 4.
    Dvurečenskij, A.: Pseudo MV-algebras are intervals in -group. J. Aust. Math. Soc. 72, 427–445 (2002) MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Dvurečenskij, A.: Perfect effect algebras are categorically equivalent with Abelian interpolation po-groups. J. Aust. Math. Soc. 82, 183–207 (2007) MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Dvurečenskij, A.: Cyclic elements and subalgebras of GMV-algebras. Soft Comput. 14, 257–264 (2010) MATHCrossRefGoogle Scholar
  7. 7.
    Dvurečenskij, A., Pulmannová, S.: New Trends in Quantum Structures. Kluwer Academic, Dordrecht (2000) MATHCrossRefGoogle Scholar
  8. 8.
    Dvurečenskij, A., Vetterlein, T.: Pseudoeffect algebras. I. Basic properties. Int. J. Theor. Phys. 40, 685–701 (2001) MATHCrossRefGoogle Scholar
  9. 9.
    Dvurečenskij, A., Vetterlein, T.: Pseudoeffect algebras. II. Group representation. Int. J. Theor. Phys. 40, 703–726 (2001) MATHCrossRefGoogle Scholar
  10. 10.
    Dvurečenskij, A., Xie, Y., Yang, A.: Discrete (n+1)-valued states and n-perfect pseudo-effect algebras. Soft Comput. (2013, to appear). doi: 10.1007/s00500-013-1001-2.
  11. 11.
    Foulis, D.J., Bennett, M.K.: Effect algebras and unsharp quantum logics. Found. Phys. 24, 1325–1346 (1994) ADSCrossRefMathSciNetGoogle Scholar
  12. 12.
    Fuchs, L.: Partially Ordered Algebraic Systems. Pergamon Press, Oxford (1963) MATHGoogle Scholar
  13. 13.
    Fuchs, L.: Riesz groups. Ann. Sc. Norm. Super. Pisa, Cl. Sci. 19, 1–34 (1965) MATHGoogle Scholar
  14. 14.
    Glass, A.M.W.: Partially Ordered Groups. World Scientific, Singapore (1999) MATHCrossRefGoogle Scholar
  15. 15.
    Goodearl, K.R.: Partially Ordered Abelian Groups with Interpolation. Math. Surveys and Monographs, vol. 20. Amer. Math. Soc., Providence (1986) MATHGoogle Scholar
  16. 16.
    Pulmannová, S.: Compatibility and decomposition of effects. J. Math. Phys. 43, 2817–2830 (2002) ADSMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Ravindran, K.: On a structure theory of effect algebras. Ph.D. thesis, Kansas State Univ., Manhattan, Kansas (1996) Google Scholar
  18. 18.
    von Neumann, J.: Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton (1955) MATHGoogle Scholar
  19. 19.
    Varadarajan, V.S.: Geometry of Quantum Theory, vol. 1. Van Nostrand, Princeton (1968) MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Mathematical InstituteSlovak Academy of SciencesBratislavaSlovakia
  2. 2.Depart. Algebra Geom.Palacký Univer.OlomoucCzech Republic

Personalised recommendations