Advertisement

International Journal of Theoretical Physics

, Volume 52, Issue 8, pp 2647–2656 | Cite as

Kantowski-Sachs Universe Filled with Perfect Fluid in f(R,T) Theory of Gravity

  • G. C. Samanta
Article

Abstract

The exact solutions of the field equations in respect of Kantowski-Sachs universe filled with perfect fluid in the framework of f(R,T) theory of gravity (Harko et al. in Phys. Rev. D 84:024020, 2011) is derived. A cosmological model with an appropriate choice of the function f(T) is constructed. The physical behavior of the cosmological model is studied. Some important features of astrophysical phenomena, like Hubble’s parameter H(z), luminosity distance (d L ) and distance modulus μ(z) with red-shift are also discussed.

Keywords

f(R,T) gravity Kantowski-Sachs universe Perfect fluid Cosmological parameters 

Notes

Acknowledgements

The authors would like to convey their sincere thanks and gratitude to the anonymous reviewers for his useful comments and suggestions for the improvement of the paper.

References

  1. 1.
    Harko, T., Lobo, F.S.N., Nojiri, S., Odintsov, S.D.: Phys. Rev. D 84, 024020 (2011) ADSCrossRefGoogle Scholar
  2. 2.
    Riess, A.G., et al.: Astron. J. 116, 1009 (1998) ADSCrossRefGoogle Scholar
  3. 3.
    Perlmutter, S., et al.: Astrophys. J. 517, 565 (1999) ADSCrossRefGoogle Scholar
  4. 4.
    Bennet, C.L., et al.: Astrophys. J. Suppl. Ser. 148, 1 (2003) ADSCrossRefGoogle Scholar
  5. 5.
    Spergel, D.N., et al.: Astrophys. J. Suppl. Ser. 148, 175 (2003) ADSCrossRefGoogle Scholar
  6. 6.
    Tegmark, M., et al.: Phys. Rev. D 69, 103501 (2004) ADSCrossRefGoogle Scholar
  7. 7.
    Spergel, D.N., et al.: Astrophys. J. 170, 377 (2007) CrossRefGoogle Scholar
  8. 8.
    Oppenheimer, J.R., Snyder, H.: Phys. Rev. 56, 455 (1939) ADSMATHCrossRefGoogle Scholar
  9. 9.
    Penrose, R.: Riv. Nuovo Cimento 1, 252 (1969) Google Scholar
  10. 10.
    Penrose, R.: Gen. Relativ. Gravit. 34, 1141 (2002) ADSMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Yodzis, P., Seifert, H.J., Moller Zum Hagen, H.: Commun. Math. Phys. 34, 135 (1973) ADSCrossRefGoogle Scholar
  12. 12.
    Eardley, D.M., Smarr, L.: Phys. Rev. D 19, 2239 (1979) ADSCrossRefMathSciNetGoogle Scholar
  13. 13.
    Christodoulou, D.: Commun. Math. Phys. 93, 171 (1984) ADSCrossRefMathSciNetGoogle Scholar
  14. 14.
    Newman, R.P.A.: Class. Quantum Gravity 3, 527 (1986) ADSMATHCrossRefGoogle Scholar
  15. 15.
    Joshi, P.S., Dwivedi, I.H.: Phys. Rev. D 47, 5357 (1993) ADSCrossRefGoogle Scholar
  16. 16.
    Brans, C.H., Dicke, R.H.: Phys. Rev. 24, 925 (1961) ADSCrossRefMathSciNetGoogle Scholar
  17. 17.
    Canuto, V., et al.: Phys. Rev. Lett. 39, 429 (1977) ADSMATHCrossRefGoogle Scholar
  18. 18.
    Saez, D., Ballester, V.J.: Phys. Lett. A 113, 467 (1986) ADSCrossRefGoogle Scholar
  19. 19.
    Takahashi, T., Soda, J.: Prog. Theor. Phys. 124, 911 (2010) ADSMATHCrossRefGoogle Scholar
  20. 20.
    Ilha, A., Lemos, J.P.S.: Phys. Rev. D 55, 1788 (1997) ADSCrossRefMathSciNetGoogle Scholar
  21. 21.
    Banados, M., Teitelboim, C., Janelli, J.: Phys. Rev. D 49, 975 (1994) ADSCrossRefMathSciNetGoogle Scholar
  22. 22.
    Ilha, A., Kleber, A., Lemos, J.P.S.: J. Math. Phys. 40, 3509 (1999) ADSMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Maeda, H.: Phys. Rev. D 73, 104004 (2006) ADSCrossRefMathSciNetGoogle Scholar
  24. 24.
    Jhingan, S., Ghosh, S.G.: Phys. Rev. D 81, 024010 (2010) ADSCrossRefGoogle Scholar
  25. 25.
    Nojiri, S., Odintsov, S.D.: Phys. Lett. B 562, 147 (2003). arXiv:hep-th/0303117 ADSMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Nojiri, S., Odintsov, S.D.: (2006). arXiv:hep-th/0608008
  27. 27.
    Nojiri, S., et al.: arXiv:hep-th/0608168 (2006)
  28. 28.
    Adhav, K.S.: Astrophys. Space Sci. 339, 365 (2012) ADSCrossRefGoogle Scholar
  29. 29.
    Reddy, D.R.K., Santikumar, R., Naidu, R.L.: Astrophys. Space Sci. 342, 249 (2012) ADSCrossRefGoogle Scholar
  30. 30.
    Shamir, M.F., Jhangeer, A., Bhatti, A.A.: arXiv:1207.0708v1 (2012)
  31. 31.
    Chaubey, R., Shukla, A.K.: Astrophys. Space Sci. 343, 415 (2013) ADSCrossRefGoogle Scholar
  32. 32.
    Kantowski, R., Sachs, R.K.: J. Math. Phys. 7, 443 (1966) ADSCrossRefMathSciNetGoogle Scholar
  33. 33.
    Collins, C.B.: J. Math. Phys. 18, 2116 (1977) ADSCrossRefGoogle Scholar
  34. 34.
    Barrow, J.D., Dabrowski, M.P.: Phys. Rev. D 55, 630 (1997) ADSCrossRefMathSciNetGoogle Scholar
  35. 35.
    Gergely, L.: Phys. Rev. D 59, 104014 (1999) ADSCrossRefMathSciNetGoogle Scholar
  36. 36.
    Gergely, L.: Phys. Rev. D 65, 127503 (2002) ADSCrossRefMathSciNetGoogle Scholar
  37. 37.
    Wang, X.: Astrophys. Space Sci. 298, 433 (2005) ADSMATHCrossRefGoogle Scholar
  38. 38.
    Chaubey, R.: Int. J. Theor. Phys. 51, 3933 (2012) MATHCrossRefMathSciNetGoogle Scholar
  39. 39.
    Bermann, M.S.: Nuovo Cimento B 74, 182 (1983) ADSCrossRefGoogle Scholar
  40. 40.
    Landau, L.D., Lifshitz, E.M.: The Classical Theory of Fields. Butterworth-Heinemann, Oxford (2002) Google Scholar
  41. 41.
    Collins, C.B., Hawking, S.W.: Astrophys. J. 180, 317 (1973) ADSCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of MathematicsBirla Institute of Technology and Science (BITS) PilaniZuarinagarIndia

Personalised recommendations