Advertisement

International Journal of Theoretical Physics

, Volume 52, Issue 7, pp 2379–2385 | Cite as

Quantum Correlations Induced by Local von Neumann Measurement

  • Ming-Jing Zhao
  • Ting-Gui Zhang
  • Zong-Guo Li
  • Xianqing Li-Jost
  • Shao-Ming Fei
  • De-Shou Zhong
Article

Abstract

We study the total quantum correlation, semiquantum correlation and joint quantum correlation induced by local von Neumann measurement in bipartite system. We analyze the properties of these quantum correlations and obtain analytical formula for pure states. The experimental witness for these quantum correlations is further provided and the significance of these quantum correlations is discussed in the context of local distinguishability of quantum states.

Keywords

Quantum correlation Semiquantum correlation Joint quantum correlation 

Notes

Acknowledgement

S.M. Fei acknowledges the support from NSFC under No. 11275131.

References

  1. 1.
    Ollivier, H., Zurek, W.H.: Phys. Rev. Lett. 88, 017901 (2001) ADSCrossRefGoogle Scholar
  2. 2.
    Henderson, L., Vedral, V.: J. Phys. A 34, 6899 (2001) MathSciNetADSMATHCrossRefGoogle Scholar
  3. 3.
    Vedral, V.: Phys. Rev. Lett. 90, 050401 (2003) MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    Ferraro, A.: Phys. Rev. A 81, 052318 (2010) ADSCrossRefGoogle Scholar
  5. 5.
    Dakić, B., Vedral, V., Brukner, Č.: Phys. Rev. Lett. 105, 190502 (2010) ADSCrossRefGoogle Scholar
  6. 6.
    Luo, S.: Phys. Rev. A 77, 022301 (2008) ADSCrossRefGoogle Scholar
  7. 7.
    Luo, S., Fu, S.: Phys. Rev. A 82, 034302 (2010) MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    Modi, K., Paterek, T., Son, W., Vedral, V., Williamson, M.: Phys. Rev. Lett. 104, 080501 (2010) MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    Bellomo, B., Giorgi, G.L., Galve, F., Franco, R.L., Compagno, G., Zambrini, R.: Phys. Rev. A 85, 032104 (2012) ADSCrossRefGoogle Scholar
  10. 10.
    Giorgi, G.L., Bellomo, B., Galve, F., Zambrini, R.: Phys. Rev. Lett. 107, 190501 (2011) ADSCrossRefGoogle Scholar
  11. 11.
    Brodutch, A., Modi, K.: Quantum Inf. Comput. 12, 0721 (2012) MathSciNetGoogle Scholar
  12. 12.
    Bennett, C.H., Grudka, A., Horodecki, M., Horodecki, P., Horodecki, R.: Phys. Rev. A 83, 012312 (2011) ADSCrossRefGoogle Scholar
  13. 13.
    Gessner, M., Breuer, H.P.: Phys. Rev. Lett. 107, 180402 (2011) ADSCrossRefGoogle Scholar
  14. 14.
    Luo, S., Fu, S.: Theor. Math. Phys. 171, 870 (2012) CrossRefGoogle Scholar
  15. 15.
    Uhlmann, A.: Phys. Rev. A 62, 032307 (2000) MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    Albeverio, S., Fei, S.M.: J. Opt. B 3, 223 (2001) MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    Rungta, P., Bužek, V., Caves, C.M., Hillery, M., Milburn, G.J.: Phys. Rev. A 64, 042315 (2001) MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    Horodecki, M., Horodecki, P.: Phys. Rev. A 59, 4206 (1999) MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    Werner, R.F.: Phys. Rev. A 40, 4277 (1989) ADSCrossRefGoogle Scholar
  20. 20.
    Hendrych, M., Dusek, M., Filip, R., Fiurasek, J.: Phys. Lett. A 310, 95 (2003) MathSciNetADSCrossRefGoogle Scholar
  21. 21.
    Ghosh, S., Kar, G., Roy, A., Sen(De), A., Sen, U.: Phys. Rev. Lett. 87, 277902 (2001) MathSciNetADSCrossRefGoogle Scholar
  22. 22.
    Walgate, J., Hardy, L.: Phys. Rev. Lett. 89, 147901 (2002) MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Ming-Jing Zhao
    • 1
  • Ting-Gui Zhang
    • 1
  • Zong-Guo Li
    • 2
  • Xianqing Li-Jost
    • 1
  • Shao-Ming Fei
    • 1
    • 3
  • De-Shou Zhong
    • 4
  1. 1.Max-Planck-Institute for Mathematics in the SciencesLeipzigGermany
  2. 2.College of ScienceTianjin University of TechnologyTianjinChina
  3. 3.School of Mathematical SciencesCapital Normal UniversityBeijingChina
  4. 4.Center of MathematicsChina Youth University for Political SciencesBeijingChina

Personalised recommendations